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Efficient, Fair, and Incentive-Compatible
Healthcare Rationing

Haris Aziz† Florian Brandl‡

Fair and efficient rationing of healthcare resources has emerged as an important

issue that has been discussed by medical experts, policy-makers, and the general

public. We consider a healthcare rationing problem where medical units are to

be allocated to patients. Each unit is reserved for one of several categories and

the categories may have different priorities for the patients. We present a flexible

allocation rule that respect the priorities, comply with the eligibility requirements,

allocate the largest feasible number of units, and do not incentivize agents to hide

that they qualify through a category. To the best of our knowledge, this is the

first known rule with the aforementioned properties. Our rule also characterizes all

possible outcomes that satisfy the first three properties. Moreover, it is polynomial-

time computable.

Keywords: Allocation under priorities, healthcare rationing, assignment maxi-

mization.

1 Introduction

The COVID-19 pandemic has emerged as a major challenge that the world has faced. It has

resulted in a frantic scientific race to produce the most effective and safe vaccine to stem the

devastating effects of the pandemic. Whereas there is encouraging initial news on the creation of

vaccines, there are still several scientific challenges on how to distribute, allocate, and administer

them in an efficient and fair manner.

Since healthcare resources such as ventilators, antiviral treatments, and vaccines can be scarce

or costly, a fundamental question that arises is who to prioritize when making allocation de-

cisions. For example, three important priority groups that are highlighted by medical practi-

tioners and policy-makers are (1) health care workers; (2) other essential workers and people in

high-transmission settings; (3) and people with medical vulnerabilities associated with poorer
†UNSW Sydney and Data61 CSIRO, Australia, haris.aziz@unsw.edu.au
‡Princeton University, USA, brandl.ffx@gmail.com
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COVID-19 outcomes (Persad et al., 2020; Truog et al., 2020). Other concerns that have been

discussed include racial equity (Bruce and Tallman, 2021).

When healthcare resources need to be allocated, it is not enough to identify priority groups.

There is also a need to algorithmically and transparently make these prioritized allocations

decisions (Emanuel et al., 2020; WHO, 2020). In a New York Times article, the issue has been

referred to as one of the hardest decisions health organizations need to make (Fink, 2020). Since

the decisions need to be justified to the public, they must be aligned with the ethical guidelines,

such as respecting priorities of various categories. These decisions are not straightforward,

especially when a patient is eligible for more than one category. When patients are eligible for

multiple categories, the decision on which category is used can have compounding effects on

what categories other agents can use. A fundamental question that arises is the following one:

How do we allocate scarce medical resources fairly and efficiently while taking into

account various ethical principles and priority groups?

The question is not just fundamental but the solution to the problem is time–critical as

various states, city councils, and municipalities start to roll out vaccines using their particular

ethical guidelines. The problem of health care rationing has recently been formally studied by

market designers. Pathak et al. (2020) were among the first to frame the problem as a two-sided

matching problem in which patients are on one side and the resources units are on the other

side. By doing so, they linked the healthcare rationing problem with the rich field of two-sided

matching (Roth and Sotomayor, 1990).

Pathak et al. suggested dividing the units into different reserve categories, each with its own

priority ranking of the patients. The categories and the category-specific priorities represent the

ethical principles and guidelines that a policy-maker may wish to implement.1 For example, a

category for senior people may have an age-specific priority ranking that puts the eldest citizens

first. Having a holistic framework that considers different types of priorities has been termed

important in healthcare rationing.2 The approach of Pathak et al. has been recommended

or adopted by various organizations including the NASEM (National Academies of Sciences,

Engineering, and Medicine) Framework for Equitable Vaccine Allocation (NASEM-National

Academies of Sciences, Engineering, and Medicine, 2020) and has been endorsed in medical

circles (Persad et al., 2020; Sönmez et al., 2020). The approach has been covered widely in the

media, including the New York Times and the Washington Post.3

For their two-sided matching formulation, Pathak et al. (2020) proposed a solution for the

problem. One of their key insights was that running the Deferred Acceptance algorithm (Gale

1See for example, the book by Bognar and Hirose (2014) on the ethics of healthcare rationing that discusses

many of these principles.
2In a report issued by the Deeble Institute for Health Policy Research, Martin (2015) writes that “To establish

robust healthcare rationing in Australia, decision-makers need to acknowledge the various implicit and explicit

priorities that influence the process and develop a decision-making tool that incorporates them.”
3https://www.covid19reservesystem.org/media
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and Shapley, 1962; Roth, 2008) on the underlying problem satisfies basic relevant axioms (eli-

gibility compliance, respect of priorities, and non-wastefulness). They also showed when all the

category priorities are consistent with a global baseline priority, then there is a smart reserves

algorithm that computes a maximum size matching satisfying the basic axioms. The smart

reserves approach makes careful decisions about which category should be availed by which

patient to achieve the maximum size property. However, the problem of such a smart reserves

approach for the general problem with general heterogeneous priorities has not been addressed

in the literature. Allowing heterogeneous priorities for categories seems to be very much in

the spirit of incorporating different ethical values. For example, one would expect the priority

ordering for old people to be very different from a priority ordering for front-line workers which

would favor energetic medical professionals.4 In this paper, we set out to address this issue and

answer the following research problem.

For the general healthcare rationing problem with heterogeneous priorities, how do we

allocate resources in a fair, economically efficient, strategyproof, and computationally

tractable way?

Contribution For the general healthcare rationing problem, we first highlight that naively

ascribing strict preferences over the categories to the agents can have adverse effects on the

efficiency of the outcome when patients are eligible for multiple categories. If the eligibility

requirements are treated as hard constraints, it leads to inefficient allocation of resources. If the

eligibility requirements are treated as soft constraints, then the outcome does not allocate the

resources optimally to the highest priority patients, thereby undermining important healthcare

guidelines and ethical principles.

Our first contribution is to show that there exists a rule (Reverse Rejecting (REV ) rule) that

(i) complies with the eligibility requirements

(ii) respects the priorities of the categories (for each category, patients of higher priority are

served first)

(iii) yields a maximum size matching (one that allocates the largest feasible number of units

to eligible patients)

(iv) is non-wasteful (there is no unit that is unused but could be used by some eligible patient)

(v) is strategyproof (does not incentivize agents to under-report the categories they qualify

for)

(vi) is strongly polynomial-time computable.

4Even in other contexts such as immigration, where rationing policies are applied, respecting heterogeneous

priorities can be important. For example, if a country has a quota for admitting engineers, the top engineering

applicant who satisfies basic eligibility requirements may have a good case to be issued a visa.
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We prove that REV characterizes all outcomes that satisfy the first three properties.5 We

show how REV can be extended to a more general class of rules called Smart REV (S–REV )

in which a given number of unreserved units are to be processed earlier and later and in which

an additional goal is to allocate the largest feasible number of units from a designated subset

of categories called preferential categories. S–REV satisfies order preservation that is a new

axiom that we propose and which is parametrized with respect to how many unreserved units

are processes first and last. Our general class of rules generalizes two well-known reserves

rules (over-and-above and minimum-guarantees (Galanter, 1961, 1984)) that are understood in

the context of preferential categories having consistent priorities. We also provide axiomatic

characterizations of over-and-above and minimum-guarantees. Finally, we discuss how our

algorithms and their properties extend to the case where the reservations are treated as soft

reservations.

Our algorithm immediately applies to the school choice problem in which students are only

interested in being matched to one of their acceptable schools. It also applies to hiring settings

in which applicants are interested in one of the positions, and each of the departments has its

own priorities. Finally, it applies to many other rationing scenarios, such as allocation of limited

slots at public events or visas to immigration applicants.

2 Related Work

The paper is related to an active area of research on matching with distributional constraints

(see, e.g., Kojima, 2019; Aziz et al., 2021). One general class of distributional constraints that

have been examined in matching market design pertains to common quotas over institutions

such as hospitals (Kamada and Kojima, 2015, 2017; Biró et al., 2010; Goto et al., 2016).

Within the umbrella of work on matching with distributional constraints, particularly relevant

to healthcare rationing is the literature on school choice with diversity constraints and reserve

systems (Hafalir et al., 2013; Ehlers et al., 2014; Echenique and Yenmez, 2015; Kurata et al.,

2017; Aygün and Turhan, 2020; Aygün and Bó, 2020; Aziz et al., 2020; Gonczarowski et al.,

2019; Dur et al., 2018, 2020). Categories in healthcare rationing correspond to affirmative action

types in school choice. For a brief survey, we suggest the book chapter by Heo (2019). Except

for the special case in which students have exactly one type (see, e.g., Ehlers et al., 2014), most

of the approaches do not achieve diversity goals optimally, whereas for the healthcare rationing

problem we consider, we aim to find matchings that maximize the number of units allocated to

eligible patients. Ahmed et al. (2017), Dickerson et al. (2019), and Ahmadi et al. (2020) consider

optimisation approaches for diverse matchings, but their objective and models are different.

Pathak et al. (2020) were the first to frame a rationing problem with category priorities as a

two-sided matching problem in which agents are simply interested in a unit of resource and the

5In a preliminary version of the paper, we proposed a different rule that satisfies the above properties. It

requires solving as maximum weight matching of a corresponding graph. However, it does not characterize

all outcomes that satisfy the first three properties.
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resources are reserved for different categories. They show that artificially enforcing strict pref-

erences of the agents over the categories and running the deferred acceptance algorithm results

in desirable outcomes for the rationing problem. They note, however, that this approach may

lead to matchings that are not Pareto optimal. They then proposed to use the smart reserves

approach of Sönmez and Yenmez (2020) for the restricted problem when all the preferential

categories have consistent priorities. Our results can be viewed as simultaneously achieving the

key axioms of the two approaches of Pathak et al. (2020). Firstly, we propose a new algorithm

that achieves the same key axiomatic properties for heterogeneous priorities as the algorithms

of Sönmez and Yenmez (2020) and Pathak et al. (2020) for homogeneous priorities. Secondly,

our algorithm has an important advantage over the Deferred Acceptance formulation of Pathak

et al. (2020) for the case of heterogeneous priorities as our approach additionally achieves the

important property of maximality of size. It additionally satisfies a property called maximal-

ity in beneficiary assignment, which requires that the maximum number of units from the set

of ‘preferential’ categories are used. Pathak et al. (2020) design a flexible feature of their

smart reserves rule that gives agents a designated number of unreserved units before the other

units are processed. By doing so, they elegantly capture two extreme approaches within their

class that have wide-spread appeal. The first approach is based on minimum-guarantees that

specifies the minimum number of units that are kept for a particular agent group. The second

approach is over-and-above; it sets aside the specified number of units for an agent group and

only uses them once all the unreserved units are allocated (for which the agent group is eligible

as well).6 Our S–REV rule achieves these features even for the case of heterogeneous priorities.

In follow-up work, Grigoryan (2020) considers optimisation approaches for variants of the prob-

lem but does not present any polynomial-time algorithm or consider incentive issues. In contrast

to the papers on healthcare rationing discussed above, we also consider strategyproofness and

monotonicity aspects and show that our rule complies with them.

In this paper, we attempt to compute what are essentially maximum size stable match-

ings. The problem of computing such matchings is NP-hard if both sides have strict pref-

erences/priorities (Biró et al., 2010). In our problem, the agents essentially have dichoto-

mous preferences (categories they are/are not eligible for) and, hence, we are able to obtain a

polynomial-time algorithm for the problem.

Furthermore, our rules are strategyproof. In contrast, for other two-sided matching settings,

it is known that maximizing the number of matched individuals results in incentive and fairness

impossibilities (see, e.g., Afacan et al., 2020; Krysta et al., 2014). Computing outcomes that

match as many agents as possible, has also been examined in related but different contexts (see,

e.g., Aziz, 2018; Andersson and Ehlers, 2016; Abraham et al., 2007; Bogomolnaia and Moulin,

2015).

6Both the “minimum-guarantees” and “over-and-above” approaches have been discussed in the context of reserves

systems in India (see, e.g., Galanter (1961, 1984)).
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3 Model

We adopt the essential features of the healthcare rationing model of Pathak et al. (2020) with

one generalization: we allow the categories’ priorities over agents to be weak rather than strict.

There are q identical and indivisible units of some resource, which are to be allocated to the

agents in a set N with |N | = n. Each category c has a quota qc ∈ N with
∑

c∈C qc = q and a

priority ranking %c, which is a preorder on N∪{∅}. An agent i is eligible for category c if i �c ∅.
We denote by Nc the set of agents who are eligible for c. We say that I = (N,C, (%c), (qc)) is an

instance (of the rationing problem). For convenience, we will write (%c) and (qc) for the profile

of priorities and quotas in the sequel. We will also consider a baseline ordering �π, which can

be an arbitrary permutation of the agents. It could be interpreted as a global scale measuring

the need for treatment.

A matching µ : N → C ∪ {∅} is a function that maps each agent to a category or to ∅ and

satisfies the capacity constraints: for each c ∈ C, |µ−1(c)| ≤ qc. For an agent i ∈ N , µ(i) = ∅
means that i is unmatched (that is, does not receive any unit) and µ(i) = c means that i receives

a unit reserved for category c. When convenient, we will identify a matching µ with the set of

agent-category pairs {{i, µ(i)} : µ(i) 6= ∅}.7

We introduce four axioms in the context of allocating medical units that are well-grounded

in practice. For further motivation of these axioms, we recommend the detailed discussions by

Pathak et al. (2020).

The first axiom we consider requires that matchings comply with eligibility requirements. It

specifies that a patient should only take a unit of a category for which the patient is eligible.

For example, a young person should not take a unit from the units reserved for elderly people.

Definition 1 (Compliance with eligibility requirements). A matching µ complies with eligibility

requirements if for any i ∈ N and c ∈ C, µ(i) = c =⇒ i �c ∅.

The second axiom concerns the respect of priorities of categories. It rules out that a patient

is matched to a unit of some category c while some other agent with a higher priority for c is

unmatched.

Definition 2 (Respect of priorities). A matching µ respects priorities if for any i, j ∈ N and

c ∈ C, µ(i) = c and µ(j) = ∅ =⇒ j 6�c i. If there exist i, j ∈ N and c ∈ C with µ(i) = c,

µ(j) = ∅, and j �c i, we say that j has justified envy towards i for category c.

An astute reader who is familiar with the theory of stable matchings will immediately realise

that the axiom “respect of priorities” is equivalent to justified envy-freeness in the context of

school-choice matchings (Abdulkadiroğlu and Sönmez, 2003).

Next, non-wastefulness requires that if an agent is unmatched despite being eligible for a

category, then all units reserved for that category are matched to other agents.

7In graph theoretic terms, µ is a b-matching because multiple edges in µ can be adjacent to a category c.
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Definition 3 (Non-wastefulness). A matching µ is non-wasteful if for any i ∈ N and c ∈ C,
i �c ∅ and µ(i) = ∅ =⇒ |µ−1(c)| = qc.

Not all non-wasteful matchings allocate the same number of units. In particular, some may

not allocate as many units as possible. A stronger efficiency notion prescribes that the number

of allocated units is maximal subject to compliance with the eligibility requirements.

Definition 4 (Maximum size matching). A matching µ is a maximum size matching if it has

maximum size among all matchings complying with the eligibility requirements.

These four axioms capture the first guideline put forth in the report by the National Academies

of Sciences, Engineering, and Medicine: “ensure that allocation maximizes benefit to pa-

tients, mitigates inequities and disparities, and adheres to ethical principles” (NASEM-National

Academies of Sciences, Engineering, and Medicine, 2020, page 69). Requiring matchings to be

of maximum size is aligned with the principle to “gain the best value we possibly can from the

expenditure of that resource” (Dawson et al., 2020).

It will be useful to associate a graph BI , called a reservation graph, with an instance I.

BI = (N ∪ C,E) is a bipartite graph with an edge from i to c if i is eligible for c. That is,

E = {{i, c} : i �c ∅}. If G is any graph, we denote bymw(G) the number of edges in a maximum

size matching of G.

The following example illustrates the definitions above.

Example 1. Suppose there are three agents and two categories with one reserved unit each.

N = {1, 2, 3}, C = {c1, c2}, qc1 = 1, qc2 = 1.

The priority ranking of c1 is 2 �c1 3 �c1 ∅ �c1 1 and the priority ranking of c2 is 2 �c2 ∅ �c2
1 �c2 3. Figure 1 illustrates this instance I of the rationing problem.

Note that agent 1 is not eligible for any category, agent 2 is eligible for c1 and c2, and agent

3 is eligible only for c1. Thus, the following matchings comply with the eligibility requirements.

µ1 = ∅ µ2 = {{2, c1}} µ3 = {{2, c2}}

µ4 = {{3, c1}} µ5 = {{2, c2}, {3, c1}}

All of these matchings except for µ4 respect priorities. Only µ2 and µ5 are non-wasteful. The

only maximum size matching is µ5.

We are interested in allocation rules, which, for each instance, return a matching.

Definition 5 (Allocation rule). An allocation rule maps every instance I to a matching for I.

We say that an allocation rule f satisfies one of the axioms in Definitions 1 to 4 if f(I) satisfies

the axiom for all instances I. Moreover, we define a notion of strategyproofness for allocation

rules. Note that all units are identical and agents have no preferences over the category of the
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1

2

3

c1

c2

qc2=1

2 �c1 3 �c1 ∅ �c1 1

qc1=1

2 �c2 ∅ �c2 1 �c2 3

Figure 1: The instance I described in Example 1. The reservation graph BI on the left has

an edge from i to c if i is eligible for c. The priority rankings of the categories are

depicted on the right.

unit they receive. However, they may have an incentive to hide being eligible for a category, or,

more generally, to aim for a lower priority for some category.8

Formalizing strategyproofness requires the following definition. Let (%c) and (%′c) be priority

profiles and i ∈ N . We say agent i’s priority decreases from (%c) to (%′c) if for all j, k 6= i and

c ∈ C,

j %c k ←→ j %′c k

j %c i −→ j %′c i and j �c i −→ j �′c i

That is, the priority rankings over agents other than i are the same in both profiles and i

can only move down in the priority rankings from (%c) to (%′c). We also say that i’s priority

decreases from I = (N,C, (%c), (qc)) to I ′ = (N,C, (%′c), (qc)). Strategyproofness requires that

if i is unmatched for I, then i is also unmatched for I ′.

Definition 6 (Strategyproofness). An allocation rule f is strategyproof if f(I)(i) = ∅ implies

f(I ′)(i) = ∅ whenever i’s priority decreases from I to I ′.

In particular, with a strategyproof allocation rule, agents cannot benefit from hiding that

they are eligible for a category.9

An allocation rule is non-bossy if no unmatched agent can decrease her priority to change the

set of matched agents. Combined with the other axioms, this property turns out to be fairly

demanding. Thus, we weaken it by requiring only that no unmatched agent can decrease her

priority and thereby change which of the agents lower in the baseline ordering are matched.

8In the context of school choice, lowering oneself in the priority ranking of a school is akin to students deliberately

under-performing in an entrance exam.
9This restricted version of strategyproofness under which agents do not have an incentive to hide their eligible

categories, has been referred to as incentive-compatibility by Aygün and Bó (2020).
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Definition 7 (Weak non-bossiness). An allocation rule f is weakly non-bossy if f(I)(i) = ∅
implies that any j with i �π j is matched in f(I) if and only if j is matched in f(I ′) whenever

i’s priority decreases from I to I ′.

4 Issues with Breaking Ties and Applying Deferred Acceptance

The approach of Pathak et al. (2020) is to frame the healthcare rationing problem as a two-

sided matching problem. They showed that if one artificially introduces (strict) preferences

for the agents over the categories they are eligible for and applies the Deferred Acceptance

algorithm, the resulting matching complies with the eligibility requirements, respects priorities,

and is non-wasteful (Pathak et al., 2020, Theorem 2). They state the algorithmic implications

of their result.

“Not only is this result a second characterization of matchings that satisfy our three

basic axioms, it also provides a concrete procedure to calculate all such matchings.”

Although considering all possible artificial preferences and running Deferred Acceptance gives

us all the matchings satisfying the three axioms, it is computationally expensive to consider

|C|!|N | different preference profiles.

Not every preference profile leads to a compelling outcome even if the categories have strict

priorities. For example, many preference profiles lead to matchings that are not maximum size.

The next example highlights this issue.10

Example 2. Consider the instance in Example 1. Suppose we run the Deferred Acceptance

algorithm assuming all agents prefer c1 to c2 to c3. Assuming agents can only be matched to

categories they are eligible for (compliance with eligibility requirements), the resulting matching

is µ2 = {{2, c1}}. This matching is however, not the most efficient use of the resources because

it is possible to allocate all units while still satisfying the axioms in Definitions 1 to 3: µ5 =

{{3, c1}, {2, c2}}.

Hence, artificially inducing preferences of agents and running Deferred Acceptance can lead

to inefficient allocations. Even if we ignore computational concerns and can assign preferences

to agents so that the matching selected by Deferred Acceptance is of maximum size and re-

spects priorities, it is not clear whether such a rule satisfies strategyproofness and monotonicity

properties like the ones we introduced above. We propose a rule that circumvents both issues.

5 The Reverse Rejecting Rule

The Reverse Rejecting Rule (REV ) depends on the baseline ordering �π. It iteratively goes

over the agents in the reverse order of the baseline ordering. When considering agent i, it

10The issue is also evident from the discussion by Pathak et al. (2020) where they point out that sequential

treatment of categories may not give a maximum size matching.
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decides if i is rejected, that is, placed in the set of rejected agents R, or not. Agent i is rejected

if and only if the agents N \ (R ∪ {i}) can form a matching µ such that (i) µ has the same

size as a maximum size matching of the reservation graph BI , and (ii) no agent in R ∪ {i} has
justified envy for any agent matched by µ. The second constraint is captured as follows. If an

agent i ∈ R is rejected, we do not allow any agent j to be matched to a category c if i �c j.
This can be ensured by removing the edge {j, c} if i ∈ R and i �c j. In particular, we will use

the graph B−RI = ((N \ R) ∪ C,E) where E = {{j, c} : j �c ∅ and 6 ∃i ∈ R such that i �c j}.
Note that B−RI is a subgraph of BI . More generally, if R2 ⊃ R1, then B−R2

I is a subgraph of

B−R1
I . The rule is formalized as Algorithm 1. For an instance I, we will denote by RI as the

set of agents who are not matched by Algorithm 1.

The methodology of REV is different from the horizontal envelop rule of Sönmez and Yenmez

(2020) and the smart reserves rule of Pathak et al. (2020). In contrast to iteratively or instantly

selecting agents that will be matched, the REV rule goes in the reverse order of the baseline

ordering and decides which agents to reject. More importantly, REV works for heterogeneous

priorities.

Algorithm 1 Reverse Rejecting (REV ) Rule
Input: I = (N,C, (%c), (qc)); a baseline ordering �π over agents in N

Output: A matching of BI .

1: Construct the reservation graph BI = (N ∪ C,E) where {i, c} ∈ E if i �c ∅.
2: Set of rejected agents R←− ∅
3: for agent i in reverse order of �π do

4: Consider graph B−RI = ((N \R) ∪ C,E) where

E = {{i, c} : i �c ∅ and 6 ∃j ∈ R such that j �c i}

5: if mw(B−R∪{i}I ) = mw(BI) then

6: Add i to R

7: end if

8: end for

9: RI ←− R
10: Compute a maximum size matching µ of B−RI .

11: return µ

Example 3 (Illustration of Algorithm 1). Consider an instance with

N = {1, 2, 3, 4}, C = {c1, c2}, qc1 = qc2 = 1

The priorities are 1 �c1 4 �c1 2 �c1 ∅ and 1 �c2 3 �c2 ∅. For 1 �π 2 �π 3 �π 4, let us simulate

REV . The reservation graph BI is depicted in Figure 2a which has a maximum size matching

of size 2. First agent 4 is considered. Since the graph B
−{4}
I depicted in Figure 2b admits a

matching of size 2, agent 4 is placed in R. Next, agent 3 is considered and not placed in R since

10
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the graph B−{3,4}I depicted in Figure 2c does not admit a matching of size 2. The graph B−{2,4}I

depicted in Figure 2d admits a matching of size 2. Hence, agent 2 is placed in R. Lastly, since

B
−{1,2,4}
I depicted in Figure 2e does not admit a matching of size 2, agent 1 is not placed in R.

The final outcome is a maximum size matching of the graph B−{2,4}I as depicted in Figure 2d.

Theorem 1. The REV rule

(i) terminates with a feasible matching,

(ii) complies with eligibility requirements,

(iii) returns a matching of maximum size among feasible matchings,

(iv) respects priorities,

(v) is weakly non-bossy,

(vi) is strategyproof, and

(vii) can be computed in strongly polynomial time.

Proof. (i) Termination with a feasible matching. As we iterate through the for loop and move

in the reverse direction of the baseline ordering, we keep the invariant that mw(B−RI ) =

mw(BI). We stop when we cannot add any further agent into R such that mw(B−RI ) =

mw(BI). At this point, the algorithm returns a maximum size matching of B−RI .

(ii) Compliance with eligibility requirements. The outcome is a feasible matching of B−RI Any

edge {i, c} in B−RI is such that i �c ∅. Therefore the outcome satisfies eligibility require-

ments.

(iii) Maximum size matching. The returned matching is by construction a matching of size

mw(BI) and hence of maximum size among all matching satisfying compliance with eli-

gibility.

(iv) Respect of priorities. Suppose the returned matching µ does not satisfy respect of prior-

ities. First, we claim that for a feasible matching of B−RI provides no justified envy for

any agent in R. For contradiction, suppose there exists some j ∈ R that is not matched

in the outcome matching µ, i ∈ µ(c) for some c ∈ C, and j �c i. But in that case {i, c} is
not an edge in B−RI , a contradiction.

We have proved that no agent in R can have justified envy in a matching µ of B−RI . If

|R| = n −mw(BI), then we are done. Suppose that |R| < n −mw(BI). Then, during

the course of the algorithm, we arrive at a point such that |N \ R| > mw(BI) but we

cannot add any agent i to R because there exists no matching of B−(R∪{i})I of size mw(BI)

that respects priorities with respect to rejected agents R ∪ {i}. In that case, consider an

instance I ′ = (N \R,C, (%c)
′, (qc)) where %′c=%c except that if ∅ �c j if {c, j} not in the

edge set of B−RI . Note that the maximum size matching of BI′ has size at least mw(BI)

11
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Figure 2: Graphs for the instance I in Example 3.
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as BI′ = B−RI . For instance I ′ we can run REV to compute a maximum size matching

µ of BI′ that also satisfies respect of priorities with respect to agents in N \R. No agent

in j ∈ R can have justified envy for any agent k matched in µ because if j �µ(k) k, then
∅ �µ(k) k in instance I ′. Hence µ is a matching that respects priorities under instance I,

|µ| = mw(BI), the set of agents matched by µ is a strict subset of N \R. Hence, we have

arrived at a contradiction.

(v) Weak non-bossiness. For simplicity, suppose the baseline ordering �π is 1 �π 2 �π · · · �π
n. Let i ∈ N , I, I ′ be instances so that i’s priority decreases from I to I ′. Assume that

i is unmatched in REV (I). Note that mw(BI) = mw(BI′) since the edge set of BI′ is a

subset of the edge set of BI and REV (I) does not match i. Let RiI = {j ∈ RI : i �π j} be
the agents who are unmatched in REV (I) and are lower in the baseline ordering than i.

Define RiI′ similarly. We need to show that RiI = RiI′ . To this end, we prove by induction

that j ∈ RiI if and only if j ∈ RiI′ for j = n to i+ 1

The base case is trivial since the set of rejected agents is the empty set at the start of the

algorithm under both instances I and I ′.

For the induction step, let j > i and suppose j′ ∈ RiI if and only if j′ ∈ RiI′ for j′ =

n to j + 1. We prove that j ∈ RiI if and only if j ∈ RiI′ . Denote by R the set of

rejected agents at the beginning of the round where agent j is considered. Note that

R = RiI ∩ {j + 1, . . . , n} = RI ∩ {j + 1, . . . , n}. If j ∈ RiI , this is because there exists a

matching µ of B−(R∪{j})I with |µ| = mw(BI). Since RI ∩ {j, . . . , n} ⊂ R ∪ {j}, µ does

not match any agent in RI ∩ {j, . . . , n}. Since i is unmatched in REV (I), it follows that

i ∈ RI , and we can assume that µ does not match i. Now consider B−(R∪{j})I′ . For each

k ∈ N \ (R∪{j}∪ {i}) and c ∈ C, {k, c} is an edge of B−(R∪{j})I if and only if {k, c} is an
edge of B−(R∪{j})I′ since the priorities for all agents other than i are the same in I and I ′.

It follows that µ is also a feasible matching of B−(R∪{j})I′ . Therefore j ∈ RiI′ .

For the other direction, suppose j ∈ RiI′ . Hence, there exists a matching µ of B−(R∪{j})I′

with |µ| = mw(BI′) = mw(BI). As above, for each k ∈ N \ (R ∪ {j} ∪ {i}) and c ∈ C,
{k, c} is an edge of B−(R∪{j})I if and only if {k, c} is an edge of B−(R∪{j})I′ . For i and any

c ∈ C, note that if {i, c} is an edge of B−(R∩{j})I′ , then {i, c} is an edge of B−(R∪{j})I . Hence

µ is also a feasible matching of B−(R∪{j})I . Thus, j ∈ RiI′ .

This completes the proof that RiI = RiI′ . We remark that the argument above breaks

down for agents j with j �π i since if i ∈ S, not all edges of B−SI′ are also edges of B−SI .

(vi) Strategyproofness. Suppose agent i’s priority decreases from I to I ′ and i is unmatched

in REV (I). Hence, i ∈ RI . By the proof of weak non-bossiness above, RiI = RiI′ . We

prove that i is rejected under I ′. Since RiI = RiI′ , and since i ∈ RI , it follows that

mw(B
−(RiI∪{i})
I ) = mw(BI). Consider a maximum size matching of B−(R

i
I∪{i})

I . Such a

matching does not match i. Note that for each j ∈ N \ (RiI ∪ {i}) and c ∈ C, {j, c} is in

13
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the edge set of B−(R
i
I∪{i})

I ) if and only if {j, c} is in the edge set of B
−(Ri

I′∪{i})
I′ . It follows

that µ is also a feasible matching of B
−(Ri

I′∪{i})
I′ . Therefore i ∈ RI′ .

(vii) Polynomial time computability. The rule makes at most n calls to computing maximum

cardinality matching of the underlying reservation graphs so runs in strongly polynomial

time.

Remark 1. REV is not non-bossy. Consider an instance with

N = {1, 2, 3, 4}, C = {c1, c2}, qc1 = qc2 = 1

The priorities are 1 �c1 4 �c1 2 �c1 ∅ and 1 �c2 3 �c2 ∅. For 1 �π 2 �π 3 �π 4, REV yields

the matching µ = {{1, c1}, {3, c2}}. If agent 4 reports that they are not eligible for c1, agent 2

moves to the second equivalence class in the priority order of c1 and REV yields the matching

µ′ = {{1, c2}, {2, c1}}. Since µ 6= µ′, REV violates non-bossiness.

Note that among the maximum size matchings respecting the eligibility requirements and the

priorities, REV returns one that matches the set of agents that is maximal according to the

upward lexicographic ordering on subsets of agents induced by the baseline ordering. Next, we

present a characterization of possible outcomes of REV .

Theorem 2 (Characterization of REV outcomes). A matching complies with the eligibility

requirements, respects priorities, and has maximum size among feasible matchings if and only

if it is a possible outcome of REV for some baseline ordering.

Proof. Consider a matching µ with the three properties. Suppose it matches the set of agents

S ⊆ N . Our first claim is that µ is feasible matching of B−(N\S)I . Since µ satisfies the eligibility

requirements, it is a matching of the graph BI constrained to the vertex set S ∪ C. Since µ

respects priorities, there exists no edge {i, c} ∈ µ such that j �c i for some j ∈ N \S. Therefore,
it follows that µ is a matching of B−(N\S)I .

Now consider a baseline ordering �π such that i �π j for all i ∈ S and j /∈ S. We prove that

each agent j /∈ S is in RI . Consider the graph B−(R
j
I∪{j})

I , where RjI = {i ∈ RI : j �π i}. Its

vertex set contains S by definition of �π. The graph B−(R
j
I∪{j})

I is obtained by restricting BI
to N \ (RjI ∪ {j}) and removing the edge {i, c} if there is k ∈ RjI ∪ {j} with k �c i. Since µ is a

matching of B−(N\S)I , it is also a matching of B−(R
j
I∪{j})

I . Hence, each agent j /∈ S is placed in

RI . Once all the agents in N \ S are rejected, no further agents can be rejected. For otherwise

N \RI would be smaller than mw(BI) = |µ|. Since µ is a maximum size matching of B−(N\S)I ,

it follows that µ is a possible outcome of REV under the baseline ordering �π.
The converse follows from Theorem 1.
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6 Treating Unreserved Units Asymmetrically

We have thus far treated all categories symmetrically. Now we designate one category cu ∈ C
as the unreserved category. All agents are eligible for the unreserved category and the priority

ranking for the unreserved category equals the baseline ordering �π. We refer to the units

reserved for the unreserved category as unreserved units and call the remaining categories

preferential categories. The set of preferential categories is denoted by Cp. There are two reasons

for introducing the unreserved category. Firstly, we want to consider maximum beneficiary

assignments, which maximize the number of agents matched to preferential categories.11

Definition 8 (Maximum beneficiary assignment). A matching µ is a maximum beneficiary

assignment if it maximizes the number of edges that share a node with Cp.

Secondly, in various reserves problems, unreserved units are treated in special ways such as

being allocated later or earlier. We discuss both of these issues.

We observe that applying REV to the preferential categories Cp and then allocating the

unreserved units among the unmatched agents, say, according to the baseline ordering, yields a

maximum beneficiary assignment.

6.1 Order Preservation

Certain policy goals may require allocating a designated number of unreserved units before

allocating the units reserved for preferential categories. For example, the rationale for the

“over-and-above” reserve approach is that agents first get a bite at the designated unreserved

units before they utilize the preferential category units for which they are eligible. By contrast,

the “minimum-guarantees” reserve approach first assigns agents to preferential categories and

then matches the remaining agents to the unreserved units. We first define minimum-guarantees

and over-and-above reservation rules (Galanter, 1984, Chapter 13, Part B) when the agents are

eligible for at most one preferential category and all categories have priorities that are consistent

with the baseline ordering in the sense that the agents that are eligible for a category are ranked

according to the baseline ordering.12

Minimum-guarantee Consider the agents in the order of the baseline ordering. For each agent,

match her to a preferential category if (i) the agent is eligible for a preferential category and

(ii) not all units reserved for this category have been allocated. Otherwise match the agent to

the unreserved category if an unreserved unit remains.13

11In our context, the combination of maximum beneficiary assignment and non-wastefulness implies maximum

size.
12Galanter (1961, 1984) was one of the first researchers to explore the differences between the minimum-

guarantees and over-and-above reservation rules in depth.
13There is another version of the minimum-guarantees rule called the Partha method that gives an equivalent

outcome but operates differently as an algorithm. In the Partha method, the units are allocated according to

the baseline ordering (“merit”) and preferential reservation is only enforced if the reserves are not maximally

used (Galanter, 1984).
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Over-and-Above Consider the agents in the order of the baseline ordering. For each agent

i, match her to the unreserved category if (i) an unreserved unit remains and (ii) if agent i is

eligible for some preferential category, say, c, and there are still at least min{qc, |Nc|} agents

from Nc who are unmatched. Then, fill up the preferential categories as follows: for each c ∈ Cp,
the min{qc, |Nc|} highest priority unmatched agents are given one unit each from c.

We present an example adapted from the book of Galanter (1984) to illustrate the difference

between the minimum-guarantees versus the over-and-above approach.14

Example 4. Consider the case where N = {1, 2, 3, 4}, C = {c, cu}, qc = qcu = 1, Nc = {1, 4},
and 1 �π 2 �π 3 �π 4. The outcome of the minimum-guarantees rule is that agent 1 and

2 are selected and the matching is {{1, c}, {2, cu}}. The outcome of the over-and-above rule

is that agents 1 and 4 are selected and the matching is {{1, c}, {4, cu}}. In the example, the

minimum-guarantees rule coincides with the rule that solely uses the baseline ordering. On

the other hand, the over-and-above rule provides additional representation of agents from the

preferential category c.

We note that the minimum-guarantees approach allocates the unreserved units at the end

whereas the over-and-above approach allocates the unreserved units first. We now explicitly

distinguish between unreserved units that are processed earlier and later. To be precise, let

C = Cp ∪ {c1u, c2u}, where c1u represents the unreserved units to be treated first and c2u the

unreserved units to be treated at the end. We will assume that qc1u+qc2u = qcu and �c1u=�c1u=�π.
One of the contributions of Pathak et al. (2020) was to formulate a family of rules, called smart

reserves rules, that not only allows agents to be eligible for multiple preferential categories, but

generalizes the minimum-guarantees and over-and-above rule when agents may be eligible for

multiple preferential categories. In this section, we capture these approaches via an axiom for

matchings called order preserving and then propose a new rule that also works for heterogeneous

priorities. Order preservation is parametrized by the number of unreserved units that are placed

in category c1u and c2u. It captures the idea that there is an order of the categories (c1u, Cp, and

then c2u) and no two agents should be able to swap their matches so that eligibility requirements

are not violated, and an earlier category gets a higher priority agent after the swap.

Definition 9 (Order preservation). Consider a matching µ of agents to categories in Cp ∪
{c1u, c2u}. We say that µ is order preserving (with respect to c1u and c2u) for baseline ordering �π
if for any two agents i, j ∈ N

(i) µ(i) ∈ Cp ∪ {c2u}, i �µ(j) j, and j is eligible for category µ(i) implies µ(j) 6= c1u, and

14Galanter (1984) studied minimum-guarantees and over-and-above in the context of job allocation in India where

the baseline ordering represents the merit ranking and the preferential categories are historically disadvantaged

groups. He observes that the minimum-guarantees rule “insures that the amount of effective reservation is

somehow commensurate with the backwardness that inspired it.” On the other hand, he observes that the

minimum-guarantees rule may “overstate the effective amount of reservation” especially if the disadvantaged

groups are doing well enough on merit (page 461).
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(ii) µ(j) ∈ Cp ∪ {c1u}, i �µ(j) j, and i is eligible for category µ(j) implies µ(i) 6= c2u.15

There are two extreme ways unreserved units can be treated under order preservation. The

first is if qc1u = 0 and qc2u = qcu . The other is if qc1u = qcu and qc2u = 0.

The conceptual contribution of Definition 9 is that instead of explaining or describing over-

and-above and minimum-guarantees rules as consequences of certain sequential allocation meth-

ods, Definition 9 captures the key property of their resulting matching. It is formulated so that

it allows for heterogeneous priorities or agents being eligible for multiple categories. The fol-

lowing propositions provide characterizations of the two well-known allocation rules. Both

characterizations use order preservation.

Proposition 1 (Characterization of minimum-guarantees and over-and-above). Assume each

agent is eligible for at most one preferential category and all categories have consistent priorities.

Then, a matching is the outcome of the minimum-guarantees (over-and-above) rule if and only

if it

(i) complies with the eligibility requirements,

(ii) is a maximum beneficiary assignment,

(iii) respects priorities,

(iv) is non-wasteful, and

(v) satisfies order preservation for qc1u = 0 and qc2u = qcu (qc1u = qcu and qc2u = 0).

Proof. Minimum-guarantees. First, the minimum-guarantees rule complies with the eligibility

requirements and is non-wasteful. It also yields a maximum beneficiary assignment because

for each preferential category, the maximum possible number of agents are matched. The

unreserved units are matched later to the unmatched agents. Therefore, the matching respects

priorities and satisfies order preservation for qc1u = 0 and qc2u = qcu .

Next, we prove that there is exactly one matching satisfying the five properties. Suppose for

contradiction there are two such outcomes µ′ and µ′′. Then either there must be some category

c that has different matches N ′ and N ′′ in the two outcomes µ′ and µ′′, respectively or the set

of agents matched to uc are different. First assume the former. Among them the agents in

N ′ ∪ N ′′, consider the least priority agent i in (N ′ \ N ′′) ∪ (N ′′ \ N ′). Suppose i ∈ N ′ \ N ′′.
Then it means that there exists some j ∈ N ′′ \N ′ such that j �π i. Hence, µ′ does not satisfy
order preservation or respect of priorities. The other case is that all the categories have the

same agent matches but uc has different sets of matched agents in µ′ and µ′′. But then, one of

µ′ and µ′′ does not satisfy respect of priorities or non-wastefulness.

Over-and-above. First, the over-and-above rule complies with the eligibility requirements and

is non-wasteful. It also yields a maximum beneficiary assignment because for each preferential
15It follows from i �µ(j) j that i is eligible for category µ(j). We state it explicitly in (ii) to maintain the

symmetry with (i).
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category, the maximum possible number of agents are matched. The unreserved units are

matched to the highest priority agents possible subject to enabling a maximum beneficiary

assignment. Therefore, the matching respects priorities and satisfies order preservation for

qc1u = qcu and qc2u = 0.

Next, we prove that there is exactly one matching satisfying the five properties. Suppose

for contradiction there is an outcome µ′′ different than µ′ the outcome of the over-and-above

rule that also satisfies the four properties. Since µ′′ is also a maximum beneficiary assignment,

|µ′′(c)| = |µ′(c)| for each c ∈ Cp. Suppose µ′(cu) 6= µ′′(cu). Then consider the highest priority

i ∈ µ′(cu) such that i /∈ µ′′(cu). Then, since µ′′ satisfies order preservation for qc1u = qcu

and qc2u = 0 as well as respect of priorities, there is no j ∈ µ′′(cu) such that i �π j. Since

|µ′′(c)| = |µ′(c)|, this implies that the number of agents from Nc who are unmatched in µ′′ is

higher than in µ′ which implies that µ′′ violates non-wastefulness. We have now concluded that

µ′′(cu) = µ′(cu). Non-wastefulness and respect of priorities imply that µ′′(c) = µ′(c) for all

c ∈ C.

Pathak et al. (2020) take a flexible approach towards treating unreserved units. Their smart

reserves rule gives agents the unreserved units from c1u as long as the set of remaining agents

can be matched to get a maximum beneficiary assignment with respect to the preferential

categories. Whereas the REV rule does not provide this flexible feature of processing units

from c1u earlier, the smart reserves rule is not equipped to handle heterogeneous priorities. We

note that the ideas from our REV rule and the smart reserve rule complement each other and

can be combined to obtain a Smart Reverse Rejecting (S–REV ) rule.

6.2 Smart Reverse Rejecting Rule

Our Smart Reverse Rejecting (S–REV ) rule tries to give unreserved units from c1u to agents

according to the baseline ordering as long as the remaining agents (who do not yet have any

unit) can be matched to the preferential categories to get a maximum beneficiary assignment.

While allocating unreserved units from c1u to agents, if giving an agent i a unit from c1u leads to

a situation that empty-handed agents cannot form a maximum beneficiary assignment, then i is

not given a unit from c1u. Once the agents who get a unit from c1u are finalized, we can then use

the REV rule to match the remaining agents to Cp. Finally, S–REV matches the remaining

agents to c2u according to the baseline ordering.

Next, we show that while S–REV gives a maximum beneficiary assignment and gives addi-

tional flexibility, it preserves the key properties satisfied by REV .

Lemma 1. S–REV complies with the eligibility requirements.

Proof. By construction, each agent is matched to a category they are eligible for so S–REV

complies with the eligibility requirements.

Lemma 2. S–REV yields a maximum beneficiary assignment.
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Algorithm 2 Smart REV (S–REV ) Rule
Input: I = (N,C, (%c), (qc)); a baseline ordering �π over N .

Output: A matching.

1: N1 ←− ∅ {Agents to be given unreserved units from c1u}

2: for agent i down the ordering in �π do

3: if |N1| < qc1u and there exists a maximum beneficiary assignment of agents inN\(N1∪{i})
in graph BI′ where I ′ = (N \ (N1 ∪ {i}), Cp, (%c), (qc)) then

4: N1 ←− N1 ∪ {i}
5: end if

6: end for

7: Allocate the units reserved for Cp to agents in N \N1.

µ′ ←− REV ((N \N1, Cp, (%c), (qc)), π)

8: Allocate the units reserved for c2u to agents in N \N1 who are unmatched in µ′ in order of

the baseline ordering. Add the corresponding edges to µ′.

9: Let µ be the matching obtained by adding to µ′ the edges from agents in N1 to c1u.

10: return µ

Proof. By construction, S–REV yields a maximum beneficiary assignment. During the course

of the algorithm, we only put an agent in N1 if the agents in N \N1 can be matched to categories

in Cp to obtain a maximum beneficiary assignment.

One consequence is that S–REV also gives a maximum size matching for the matching to all

categories in C = Cp ∪ {c1u, c2u}.

Lemma 3. S–REV returns a matching that satisfies order preservation.

Proof. Consider a matching µ returned by S–REV . Suppose it does not satisfy order preser-

vation. Then there exist two agents i, j ∈ N such that one of the following holds:

(i) µ(i) = c1u, µ(j) 6= c1u, j �µ(i) i, and i is eligible for category µ(j).

(ii) µ(j) = c2u, µ(i) ∈ Cp ∪ {c1u}, j �µ(i) i, and j is eligible for category µ(i).

We first consider the violation of the first type: µ(i) = c1u, µ(j) 6= c1u, j �π i, and i is eligible for
category µ(j). We examine the step in which Algorithm 2 considers agent i. Since µ(i) = c1u,

agent i is added to N1. Thus, a maximum beneficiary assignment of the agents in N \ (N1∪{i})
exists. One such matching is µ. The matching µ′ obtained from µ by swapping the matches

of i and j is a maximum beneficiary assignment (since i is eligible for µ(j)) for the agents in

N \ (N1 ∪{j}). Since j �π i and N1 weakly increases in every step, N1 cannot have been larger

when the algorithm considered agent j. Hence, at this earlier step, µ′ was also a maximum
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beneficiary assignment for agents in N \ (N1∪{j}). But the existence of such a matching is the

condition for adding j to N1, which contradicts that µ(j) 6= c1u.

Next we consider a violation of the second type: µ(j) = c2u, µ(i) ∈ Cp ∪ {c1i }, j �π i, and
j is eligible for category µ(i). Since a violation of the first type cannot happen, we may assume

that µ(i) ∈ Cp. But since j is not matched to a category in Cp, this implies that REV does not

respect priorities, a contradiction.

Lemma 4. S–REV returns a matching that respects priorities.

Proof. We first prove that no unmatched agent can have justified envy for an agent matched to

c1u. Suppose an unmatched agent i comes earlier than an agent j matched to c1u. Then, i would

have been selected in the set N1 in the ‘for’ loop of Algorithm 2.

Second, no unmatched agent can have justified envy towards an agent matched to c2u because

each unmatched agent comes later in the baseline ordering than each agent matched to c2u.

Finally, no unmatched agent can have justified envy towards an agent matched to a category

in Cp as this would contradict the fact that REV respects priorities.

Lemma 5. S–REV is strategyproof.

Proof. We show that if an agent i is unmatched under S–REV , she cannot misreport to get

matched. We first show that agent i cannot misreport to get matched to u1c . Each time an

agent j is added to N1, it is because the agents in N \ (N1 ∪ {j}) can be matched to Cp to

obtain a maximum beneficiary assignment. Since i is not matched under truthful reporting, i

is not needed to obtain a maximum beneficiary assignment even if she reports all her eligible

categories, which implies that i is not needed to obtain a maximum beneficiary assignment if she

reports a strict subset of her eligible categories. Hence, i cannot affect the selection of agents

preceding her in the baseline ordering that are added to N1 and hence matched to c1u. Since i

was not matched to u1c , it means that when i was considered to be added to N1, the qc1u units

of c1u had already been used up. Therefore, i could not have manipulated her priorities with

respect to Cp to get one of them.

We have shown that i cannot affect the set N1, that is, which agents are matched to c1u. So

we suppose that agents matched to u1c are already fixed. Since REV is strategyproof, agent i

cannot get matched to a category in Cp by misreporting.

The remaining case is that, by misreporting, agent i affects the set of agents who are not

matched to a category in Cp∪{c1u} and, hence, compete with i to be matched to c2u. We observe

the following:

(i) Since agent i is not matched to a category in Cp and REV yields a maximum size matching,

agent i cannot affect the number of agents matched to categories in Cp.

(ii) Since REV is weakly non-bossy, the set of agents lower in the baseline ordering who

compete to be matched to c2u is unchanged under a misreport by i.
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The above two facts imply that under a misreport by i, the number of agents with a higher

baseline ordering than i who are not matched to a category in Cp ∪ {c1u} and hence compete to

be matched to c2u does not change. Therefore, under any misreport, agent i is not matched to

c2u.

Lemma 6. S–REV is weakly non-bossy.

Proof. Consider an agent i who is unmatched under S–REV . By the proof of Lemma 5, it

follows that i cannot affect

(i) the set of agents who are matched to c1u,

(ii) the number of agents with higher baseline ordering who are not matched to a category in

Cp ∪ {c1u}, and

(iii) the set of agents with lower baseline ordering who are not matched to a category in

Cp ∪ {c1u}.

Under a truthful report, agent i is unmatched and only agents with higher baseline ordering are

matched to c2u. Hence, it follows that a misreport of agent i does not affect the set of agents

with lower baseline ordering who are matched to c2u.

Lemma 7. S–REV is polynomial-time computable.

Proof. When agents in N1 are added iteratively, the algorithm requires checking if there exists

a maximum beneficiary assignment of agents in N \ (N1 ∪ {i}) in graph GI′ where I ′ = (N \
(N1 ∪ {i}), Cp, (%c), (qc)). This can be checked in polynomial time by algorithms to computing

a maximum-size b-matching. Once N1 is fixed, we call REV that we have already shown to

be polynomial-time solvable. After that the remaining units can be allocated in linear-time by

going down the baseline ordering.

Theorem 3. The rule S–REV

(i) complies with eligibility requirements,

(ii) yields a maximum size matching among feasible matchings,

(iii) yields a maximum beneficiary assignment,

(iv) respects priorities,

(v) is strategyproof,

(vi) is weakly non-bossy,

(vii) satisfies order preservation, and

(viii) is polynomial-time computable.
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7 Discussion

We presented allocation rules that apply to resource allocation problems in which the resources

are reserved for categories, each of which has a priority ranking over agents. The rules have

several properties that are desirable in applications. Table 1 summarizes the properties satisfied

by the main healthcare rationing algorithms discussed in this paper. Since S–REV provided

additional flexibility and still satisfies the main properties of REV , we do not include REV in

the table.

S–REV Smart Reserves DA

compliance with eligibility requirements X X X

non-wastefulness X X X

maximum size matching X X –

respect of priorities X X∗ X

strategyproofness X n/a X

weak non-bossiness X n/a X

order preservation X X∗ –

maximum beneficiary assignment X X –

polynomial-time computability X X X

Table 1: Properties satisfied by S–REV , the Smart Reserves Rule of Pathak et al. (2020), and

the Deferred Acceptance Algorithm described in Section 4. An asterisk indicates that

the property holds if priorities are strict and consistent with the baseline ordering.

N/a indicates that the rule assumes homogenous priorities but the property allows for

changes in the priorities that may result in inhomogeneous priorities.

Our allocation rule involves a baseline ordering �π over the agents, which gives rise to a

natural ordering in which patients are allocated units. We can go down the ordering �π and

give a unit to the agent that was matched by the allocation rule.

Throughout the paper, we assumed that only matchings that satisfy the eligibility require-

ments are feasible. The disadvantage of such an approach is that it is possible that some

preferential category units are not utilized even though some agents are unmatched. If we do

not impose eligibility requirements as a hard constraint, the setting is referred to as the case

of “soft reserves”. In the case of soft reserves, we can do the following. We first use REV or

S–REV to compute a matching that complies with the eligibility requirements. If some units

from Cp are not used and some agents are unmatched, we can use the baseline ordering to

greedily allocate the agents to the units. Assuming each preferential category’s priorities over

ineligible agents are consistent with the baseline ordering, the resultant rule with the post step

satisfies all the above properties except for “hard” compliance with the eligibility requirements.

The argument for strategyproofness is similar to the proof of Lemma 5. By misreporting, an
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agent cannot affect the number of agents with higher baseline order who are unmatched.

We assumed that the categories and their capacities are primitives of the model. A separate

research problem is to decide on the distribution of the units over the categories with the aim

to reduce the pandemic for society. Finally, it will be useful to consider a more fine-grained

model that allows quantifying how much a patient needs a unit.

We can reframe the main theorem in the context of school choice (Abdulkadiroğlu and Sönmez,

2003) by viewing agents as students and categories as schools. The students are indifferent

between all schools that are acceptable for them. The schools have priorities over the students.

Then Theorem 1 reads as follows.

Theorem 4. Consider the school choice problem where the students partition the schools into

acceptable and unacceptable schools. Then, there is an allocation rule that only matches students

to acceptable schools, has no justified envy, is non-wasteful, matches the maximal feasible number

of students, and is strategyproof for students.
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