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Abstract

We study the empirical content of simple Sender-Receiver games in which dis-

closures are mandatory but may be obfuscated. We focus on the fungibility

between strategic inference and costly perception, developing a stylized theoret-

ical framework that highlights this channel. Our framework yields crisp testable

implications for equilibrium play, and naturally lends itself to an experimental

design. Our laboratory results show that a large majority of Senders strategi-

cally obfuscate; and an aggregate analysis of Receiver’s stochastic-choice data

suggests Receivers adjust their perception in response to strategic inference.
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1 Introduction

Communication is a key component of many interactions. Pharmaceutical compa-

nies advertise medications to consumers; job seekers describe their qualifications to

employers; attorneys provide evidence to defend clients against litigants; researchers

describe their studies to potential participants; food manufacturers report ingredients

to shoppers. These examples share three common features. First, the goals of the in-

formed party and uninformed decision-maker need not align. Second, regulations (or

serious repercussions) force the informed party to truthfully disclose. Finally, without

being dishonest, the informed party can attempt to mitigate detrimental information

by making it harder to understand (e.g., job candidates dress up resumes, attorneys

submit entire hard drives into evidence instead of just incriminating files). Concerns

about strategic obfuscation have been raised in some of these settings, with the chal-

lenge that obfuscation is in the eye of the beholder. The Belmont report (1978),

establishing ethical principles for human-subjects research, warns: “presenting infor-

mation in a disorganized and rapid fashion, allowing too little time for consideration

or curtailing opportunities for questioning, all may adversely affect a subject’s ability

to make an informed choice.” The FDA considers presentational choices (e.g., type-

setting) when deciding whether an advertisement provides a “fair balance” of risks

and benefits.1 Even the federal law mandating disclosure of GMOs spurred contro-

versy by requiring food packaging to either clearly label GMOs or include a QR code

linking to that information (the food industry backed the latter).2

If obfuscation occurs only when information is detrimental, then witnessing obfus-

cation is itself informative, and impacts a rational agent’s efforts to decipher further.

Hence strategic sophistication may substitute for costly perception. We introduce

and analyze a stylized, easily-interpretable communication game highlighting this

tradeoff, present experimental data to document and empirically assess the tradeoff’s

relevance, and provide welfare implications.

There are two possible actions and two equally-likely states. Receiver gets a fixed

benefit for taking the action matching the state, while Sender benefits whenever one

1Does the law say anything about the design of ads for prescription drugs?
2Proponents touted Public Law 114-216 for mandating disclosure, but advocacy groups derided

it as the “DARK Act,” for Deny Americans the Right to Know. See, for instance, the WSJ article
Consumer Advocates Wary of Digitally Coded Food Labels, and the Huffington Post entry Obama
Expands Monsanto Doctrine By Signing DARK Act And Invalidating Vermont GMO Labeling Law.

1

https://www.fda.gov/drugs/prescription-drug-advertising/prescription-drug-advertising-questions-and-answers#law
http://www.wsj.com/articles/smartphone-codes-on-food-labels-face-skepticism-1470216600
https://www.huffpost.com/entry/obama-signs-dark-act-to-invalidate-vermonts-landmark_b_57a644c7e4b0ccb023727b2d
https://www.huffpost.com/entry/obama-signs-dark-act-to-invalidate-vermonts-landmark_b_57a644c7e4b0ccb023727b2d


particular action is taken. Messages can be transparent or obscure. Both fully reveal

the state, but a transparent message does so immediately, while an obscure message

requires costly effort to understand. Sender can condition his preferred message type

on the state, but his communication goal may be imperfectly realized. Consider, for

instance, an article under review. The authors may find their writing transparent,

but referees may disagree; and conversely, referees may identify issues despite the

authors’ attempts at obfuscation. We encapsulate the potential for such disagreement

in the precision of communication (p): the probability a Sender who aims to send an

obfuscated message (or aims to send a transparent one) in a given state achieves his

goal.

Following Caplin and Dean (2015), deciphering is modeled as a costly task whose

cost is unknown to the modeler. Embedded in a game-theoretic framework, a novel

feature is that Receiver’s beliefs about the state after receiving an obscure message,

but before exerting effort to decipher it, depend on expectations regarding Sender.

In an undominated Bayesian-Nash equilibrium, a strategically-sophisticated Sender

aims to obfuscate when his favored action is worst for Receiver. In equilibrium,

as precision of communication increases, Receiver becomes more convinced that any

observed obfuscation is intentional, and thus more skeptical of Sender’s favored action.

These beliefs inform his effort in deciphering the message.

Receiver’s strategic inference and ensuing effort choice manifest in the probabili-

ties, conditional on each state, that he chooses correctly despite obfuscated informa-

tion. For instance, if he eschews effort entirely and simply takes Sender’s worst action,

then Receiver is always correct in the opposing-interest state, but always wrong in

the common-interest state. If he uses some costly-perception strategy, his success in

the common-interest state may increase at the expense of the opposing-interest state.

We derive testable implications on Receiver’s state-contingent stochastic-choice data

for it to be consistent with a rational Receiver’s equilibrium behavior. Collecting such

data at the individual level is generally hard, and more so in our setting when p is

large (obfuscated messages become rare in the common-interests state). It is impor-

tant, then, to note our results extend to aggregate data in situations where Senders

and Receivers are randomly matched and have potentially heterogenous perceptual

costs, as in a laboratory experiment.

Our experiment has three treatments: low, medium and high precision of commu-

nication, with p ∈ {51%, 70%, 90%}. To bring obscure and transparent messages to
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life, we import the novel ‘colored balls’-design of Dean and Neligh (2019),3 who ex-

perimentally test the rational inattention model through how success rates vary with

incentives. They represent the state (Red/Blue) by a 10x10 matrix of randomly-

arranged red and blue balls, where exactly 51 balls color-match the state. We use

their construction for obfuscated messages. For transparent messages, we use those

balls arranged neatly by color. Thus messages differ only in clarity, not substance.

The data analysis in Section 3.2 substantiates the overall strategic sophistica-

tion and rationality of Senders and Receivers. We find 77% of Senders strategically

obfuscate, aiming for clarity in the common-interests state and obfuscation in the

opposing-interests state. Receivers’ success varies with p, showing strategic inference

can impact attention in games. We find evidence of optimal perception adjustment,

as the testable implications on aggregate stochastic choice data are satisfied (or nearly

satisfied, in one instance).

Given our evidence that average Receivers adjust perception with strategic infer-

ence, Section 4 concludes by highlighting welfare implications. First, a naive regu-

lator (who does not recognize obfuscated messages carry information beyond imme-

diate content) underestimates Receiver’s welfare gain from mandating information

disclosure. Second, and perhaps counterintuitively, greater alignment of preferences

between Sender and Receiver does not guarantee greater Receiver success.

Related work on communication

Communication games are traditionally studied in one of two extreme settings. In-

formation is soft in Crawford and Sobel (1982) cheap-talk setting: messages need not

bear any verifiable relation to the truth, but could have meaning in equilibrium. At

the other extreme is hard information, see Grossman (1981); Milgrom and Roberts

(1986): messages are immediately verifiable, and their absence can lead to information

unraveling.

Dewatripont and Tirole (2005) study intermediate situations, modeling commu-

nication as a moral-hazard-in-teams problem: Sender and Receiver have increasing,

convex effort costs, and Receiver assimilates Sender’s information with probability xy

when Sender (Receiver) exerts effort x ∈ [0, 1] (resp., y).4 Effort choices are simul-

3Also appearing in an earlier working paper which Dean and Neligh (2019) subsumes.
4Persson (2018) considers a multi-dimensional extension where the uninformed expert uses infor-

mation overload as a manipulation device.
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taneous in their main analysis, though strategic inferences are discussed in a couple

dynamic extensions. Our works share the broad features that Receiver’s understand-

ing of messages is probabilistic, and Sender’s choice impacts this distribution. But

the focus and methodology are different. To crisply highlight the interplay between

strategic inferences and costly perception, we abstract from Sender costs and study

the case where Receiver freely distinguishes between transparent and non-transparent

information. We derive testable implications, valid independently of the underlying

cost function, and empirically evaluate our predictions. For that, we build on recent

literature studying the empirical content of optimal attention in individual decision-

making problems (Caplin and Dean, 2015; Caplin and Martin, 2015; de Oliveira et al.,

2017; Ellis, 2018; Dean and Neligh, 2019).

This paper contributes to the emerging theoretical literature on attention in

games. Some works consider firms facing consumers whose perception is exogenously

given, as in Gabaix and Laibson (2006) and Bordalo et al. (2015); or who can opti-

mally allocate a fixed total effort among different dimensions, as in Spiegler (2006)

and de Clippel et al. (2014). Others consider players who endogenously choose percep-

tual efforts at a cost, often modeled using the Shannon mutual-information function

applied in Sims (2003); see Matějka (2015) and Ravid (2020), among others. But

strategic inference (and a fortiori its fungibility with optimal attention) is most of-

ten absent. An exception is Martin (2016b), who considers a firm’s strategic pricing

when facing a consumer who is rationally inattentive about product quality. He finds

a mixed-strategy equilibrium in which the high-quality seller sets a high price, while

the low-quality seller randomizes between low and high prices. The buyer’s attention

responds to the seller’s equilibrium pricing strategy, using Sims’ linear parametriza-

tion of attention costs.

In a companion paper, Martin (2016a) experimentally illustrates and calibrates

the above model. A seller owns a product of low or high value to a randomly-matched

buyer. Knowing the buyer’s value, he chooses between a low-price and a high-price

offer. Low-price offers are always profitable to the buyer, but high-price offers are only

profitable for high-value products. Not knowing his value, the buyer can examine a

string of twenty randomly generated numbers (between -100 and 100) whose sum is

the true value. Using time responses and frequency of purchasing mistakes, Martin

provides supporting evidence that selling price affects the attention buyers pay to

learn product value. Focusing on a rationally-inattentive representative buyer, the
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best approximation of buyers’ average behavior is obtained with a marginal-attention

cost of 11.9. Interestingly, explaining sellers’ average behavior using the equilibrium

in the paragraph above leads to a comparable estimate for the sellers’ belief regarding

buyers’ marginal-attention cost.

Our paper differs from Martin (2016a,b) on multiple dimensions. First, our Sender

decides whether he tries to obfuscate information, while in Martin’s framework the

seller chooses a price and information is always obfuscated. Second, we characterize

testable implications: properties on observables remaining valid whatever partici-

pants’ utilities and attention costs. Receiver is not required, for instance, to process

information using Sims’ model of rational inattention. Third, testable implications are

derived while allowing the precision parameter to vary, permitting cross-observation

tests of consistency with equilibrium play. In addition to the more stringent testable

implications of equilibrium play, simply witnessing that success rates at guessing the

state vary with the precision level provides evidence in a clean treatment-control

design that Receivers adjust their attention based on strategic inference.

The experimental literature examines many aspects of communication. Blume

et al. (2020) surveys a large literature on cheap-talk experiments. A smaller literature

studies information unraveling with hard information; see Jin et al. (2021b) and

references therein. Fréchette et al. (2019) explores an umbrella framework nesting

cheap talk, hard information, and Bayesian persuasion. They relax the commitment

assumption in Bayesian persuasion through a probability senders can revise choices,

but do not consider obfuscated information. Jin et al. (2021a) studies obfuscation,

albeit with a different goal. Their Senders know the state s ∈ {1, 2, . . . , 10} and send

a string with c ∈ {1, 2, . . . , 20} numbers whose sum equals the state. The Receiver

has 60 seconds to guess the sum (else a random guess is made), and is paid for

accuracy. Sender’s payoff increases in the guess. While information should unravel

like with voluntary disclosure, Jin et al. (2021a) provides experimental evidence that

it doesn’t and advances possible explanations. By contrast, unraveling does not occur

at equilibrium in our model: quite realistically, perceiving a message as obfuscated

is informative about Sender’s intention, but does not reveal for sure that Sender

aimed to obfuscate. This allows us to focus on our main question of interest, the

testable implications for the substitutability between optimal perception and strategic

inference.
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2 Theoretical benchmark

Consider a communication game with a prior π over two states, ω1 and ω2. Receiver

has two possible actions, A = {a1, a2}, and prefers ai in state ωi. By contrast, Sender

strictly prefers a2 in all states, and wishes to persuade Receiver to pick it; hence we

refer to their interaction as a persuasion game. Sender and Receiver are expected

utility maximizers. For simplicity, we assume Receiver gets $mR when his action

matches the state, and nothing otherwise; while Sender gets $mS when Receiver

chooses a2, and nothing otherwise. Thus players’ interests are opposed in ω1 and

common in ω2.

Knowing the state, Sender must communicate it to Receiver, but need not make

this information easily understood. Sender can aim to communicate clearly or aim

to obfuscate. The precision level p ∈ (1/2, 1) calibrates how likely Sender’s commu-

nication goal is achieved. If Sender aims to communicate clearly in state ω, then the

resulting message to Receiver is transparent (denoted T (ω)) with probability p, and

obscure (denoted O(ω)) otherwise. Oppositely, if Sender aims to obfuscate, then the

message is obscure with probability p and transparent otherwise. The precision p is

a parameter we vary across experimental treatments.

With two states, there are four message types. With a transparent message T (ω),

ω is revealed at once. With an obscure message, Receiver’s only way to distinguish

O(ω1) from O(ω2) is to exert effort to decipher the message. In line with recent models

of optimal attention in decision theory, he chooses a perception strategy (S, µ), where

S is a finite set whose elements s ∈ S are called signals and µ(s|ω) is the probability

of signal s in state ω. He also chooses a decision rule specifying an action for each

signal, or equivalently the set S1 ⊆ S of signals resulting in action a1 (with a2 picked

for any s ∈ S2 = S \ S1). The choice of perception strategy and decision rule entails

a cost cR(S1,S, µ), on which we impose no restriction aside from it being subtracted

from the expected utility of earnings.

2.1 Equilibrium Conditions

Our equilibrium notion is undominated Bayesian-Nash equilibrium. Consider Sender’s

optimization problem first. Receiver’s equilibrium perception strategy and decision

rule define a success probability `(ωi) for i = 1, 2, the probability of guessing state

ωi correctly following an obfuscated message. With τ(ω) denoting the probability
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Sender aims to communicate clearly in state ω, Sender’s equilibrium conditions are
τ(ω1) ∈ arg max

x∈[0,1]
{uS(mS)− ν(x, `(ω1))[uS(mS)− uS(0)]}

τ(ω2) ∈ arg max
x∈[0,1]

{uS(0) + ν(x, `(ω2))[uS(mS)− uS(0)]},
(1)

where ν(x, y) = [x(p + (1 − p)y) + (1 − x)(py + 1 − p)] is the unconditional prob-

ability Receiver correctly guesses the state, if Sender aims to communicate clearly

with probability x and Receiver guesses correctly with probability y (probability 1)

following an obscure (respectively, transparent) message. Clearly, Sender’s payoff is

decreasing in ν in the opposing-interests state (top equation), and increasing in ν in

the common-interests state (bottom equation).

Notice that Receiver’s beliefs about the state after receiving an obscure message,

but before exerting effort to decipher it, are:

π̂(ω) =
π(ω) (τ(ω)(1− p) + (1− τ(ω))p)∑

i=1,2 π(ωi) (τ(ωi)(1− p) + (1− τ(ωi))p)
. (2)

Her perception strategy and decision rule maximize

uR(0) +
∑
i=1,2

π̂(ωi)µ(Si|ωi)(uR(mR)− uR(0))− cR(S1,S, µ) (3)

under the constraint that she prefers action ai following σ ∈ Si. This means Receiver’s

posterior probability

µ̂(ω|σ) =
µ(σ|ω)π̂(ω)∑

ω′∈Ω µ(σ|ω′)π̂(ω′)

for state ω, conditional on getting signal σ from an obscure message, satisfies

µ̂(ωi|σ) ≥ µ̂(ω−i|σ), (4)

for all σ ∈ Si and for all i = 1, 2.

2.2 Observables and Equilibrium Consistency

Consider repeated observations from several persuasion games differing only in the

precision level p. Of course, perception strategies and decision rules are not ob-

servable. We provide testable implications on a dataset {(pj; τ j, `j)|j = 1, . . . , J},
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where pj is the precision level in persuasion game j, τ j = (τ j(ω1), τ j(ω2)) specifies

the state-dependent probability Sender aims to communicate clearly in game j, and

`j = (`j(ω1), `j(ω2)) specifies the state-dependent probability Receiver chooses the

correct action in game j.

The dataset is consistent with equilibrium play if there exist utility functions uS,

uR, a perception-cost function cR, and for each j a perception strategy and decision

rule (Sj
1 ,Sj, µj) that combine with τ j to form an equilibrium of the Sender-Receiver

game given by pj, such that `j(ωi) = µj(Si|ωi) for i = 1, 2. This amounts to a

revealed-preference exercise in a game with state-dependent stochastic-choice data.

In other words, we are interested in finding all predictions of our communication

games that remain valid whatever the utility and perception-cost functions. While

we focused on an equilibrium notion, the testable implications we derive remain valid

under alternative assumptions on participants’ expectations.

2.3 Testable Implications

We are now ready to state the main theoretical result.

Proposition 1. The dataset is consistent with equilibrium play if, and only if, all the

following conditions hold:

(i) For each persuasion game j, Sender aims to obfuscate in the opposing-interests

state and aims to communicate clearly in the common-interests state: τ j(ω1) = 0

and τ j(ω2) = 1;

(ii) Receiver’s belief upon receipt of an obfuscated message in game j is:

π̂j(ω1) =
pjπ(ω1)

pjπ(ω1) + (1− pj)π(ω2)
;

(iii) In each persuasion game j, Receiver’s expected success rate upon receipt of an

obfuscated message is at least as high as the expected success rate from choosing

action a1:

π̂j(ω1)`j(ω1) + (1− π̂j(ω1))`j(ω2) ≥ π̂j(ω1);

(iv) Excess success rates are monotone: for any pair of persuasion games with

π̂j(ω1) > π̂k(ω1) (equivalently pj > pk, given (ii)) we have `j(ω1) − `j(ω2) ≥
`k(ω1)− `k(ω2).
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The proof appears in the Appendix. We now provide some intuition and discuss

the robustness of our testable implications against other belief assumptions. Re-

ceiver’s strategy pins down success probabilities `(ωi) for i = 1, 2. Whatever they are,

Sender’s payoff in (1) decreases (increases) in x in the opposing-interests (common-

interests) state, and strictly so if Receiver fails to perfectly guess the state. Thus,

beyond equilibrium play, property (i) is robust to alternative specifications of Sender’s

expectations. Aiming to obfuscate (communicate clearly) given ω1 (ω2) is his unique

weakly dominant strategy, and unique best response with success rates strictly below

one.

Updated beliefs in (ii) arise from Bayes’ rule (see (2)), given Sender’s equilibrium

strategy in (i). We use this belief for our benchmark data analysis, but also explore

alternate specifications. For instance, subjects may fail to update probabilities accu-

rately, fail to recognize the strategy in (i) is dominant, or suspect Sender does not

recognize that strategy is dominant.

Though part of a game, once Receiver’s beliefs are fixed, her choices can be stud-

ied as an individual problem of optimal perception reminiscent of Caplin and Dean

(2015). A difference is that they consider payoff changes, keeping states’ probabilities

unchanged. The very nature of our analysis entails (endogenous) changes in proba-

bilities instead. This difference can be dealt with through mathematical transforma-

tion: probabilities premultiply utilities, so probability changes can be reinterpreted

as specially-structured payoff changes. With this in mind, condition (iii) corresponds

to Caplin and Dean’s NIAS: picking a1 cannot generate higher payoffs, as Receiver

would be better off not exerting any effort (see also Caplin and Martin (2015)). Con-

dition (iv) relates to their NIAC condition, which says total utility cannot increase

by reassigning attention across any cycle of decision problems (of any length). Given

our structure–probabilities vary, not payoffs–we show it suffices to consider pairwise

cycles, or that excess-success rates `p(ω1)− `p(ω2) weakly increase in the precision p.5

5We thank Doron Ravid for pointing out that Rochet (1987, Proposition 1) provides another
instance where a general cyclic condition simplifies to a requirement involving only cycles of size
two. Rochet (1987) first shows that there exist monetary transfers making an allocation map X
strategy-proof if, and only if, X satisfies a general cycle condition similar in form to that of Caplin
and Dean (2015). For the one-dimensional case, he shows his condition simplifies to the classic
monotonicity condition of Spence (1974) and Spence (1976) under the Spence-Mirrlees assumption.
For another example where a condition over cycles simplifies on subdomains, Rose (1958) shows that
the Strong Axiom of Revealed Preference (SARP) boils down to the Weak Axiom of Revealed Pref-
erence (WARP) in the two-commodity case. It would be interesting to uncover a general condition
guaranteeing such simplifications.
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Conditions in (iv) apply to any Receiver beliefs (π̂j)Jj=1, even if they violate (ii).

When comparing excess-success rates in games j and k, what determines the direction

of inequality to check is whether π̂j(ω1) or π̂k(ω1) is larger, not their cardinal values.

Thus (iv) is robust to other belief specifications provided that π̂j(ω1) increases in the

precision pj, which one generally expects since Sender has no incentive to obfuscate

in the common-interests state ω2.

2.4 A population of Senders and Receivers

The above presumes a single Sender and Receiver. Suppose Senders and Receivers

are drawn uniformly at random from a population. All players strictly prefer more

money, but may have different utility functions and perception costs.

This is a setting of practical relevance for at least two reasons. First, a Sender

may expect to face a population of Receivers with different perceptual costs (e.g.,

heterogenous consumers). Second, it can be time-consuming for subjects in exper-

iments to generate individual-level, state-dependent stochastic-choice data. This is

especially so in our experiment, where messages are generated endogenously, and we

would expect to see few obfuscated ones in the common-interests state when p is

high. Fortunately, Proposition 1 extends to characterize testable implications in this

setting. Regarding Senders, the argument for (i) immediately shows the same strat-

egy remains weakly dominant (strictly so if there is any chance of mistake following

obfuscated messages). Hence Receivers share the same belief (ii) as before, upon

seeing an obfuscated message but before attempting to decipher it.

Proposition 1 holds for every Receiver. Hence they each satisfy (iii)− (iv), which

are linear in individual success rates. Let ¯̀j(ω) be the average success rate of Receivers

in game j and state ω. In our between-subject analysis, different sets of subjects

play our communication game with different precisions levels. We can reasonably

assume, as is standard, that different treatments draw from the same population of

characteristics. Summing (iii) and (iv) over all Receivers in each treatment implies:

π̂j(ω1)¯̀j
i (ω1) + (1− π̂j(ω1))¯̀j

i (ω2) ≥ π̂j(ω1), for all j.

¯̀j
i (ω1)− ¯̀j

i (ω2) ≥ ¯̀k
i (ω1)− ¯̀k

i (ω2), when π̂j(ω1) > π̂k(ω1).

These necessary conditions are the same as Proposition 1(iii)− (iv), but using aver-

age success rates. Conversely, if average success rates satisfy these conditions, then
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Proposition 1 implies the data can be explained by a hypothetical population of

Receivers identical in utility functions and perception costs, even if they truly are

heterogenous. Thus Proposition 1, applied to population averages, remains necessary

and sufficient for consistency with equilibrium play in this more general setting.

3 Experiment

3.1 Design

We first describe the implementation of the communication game, and then describe

how subjects are matched.

There are two equally-likely keywords, Blue and Red. Given the keyword, Receiver

gets one of two possible message types. Messages always have 100 balls of blue and

red color arranged in a 10x10 matrix, with exactly 51 balls whose color matches the

keyword and 49 balls whose color mismatches it. However, messages differ in how

balls are arranged. In a transparent message, the balls are arranged by color (see the

left panel of Figure 1); such a message immediately reveals the majority color. In

an obfuscated message, the same balls are randomly placed into the 10x10 matrix,

and it takes effort to garner information on the majority color (see the right panel of

Figure 1). Both message types reveal the true keyword through the majority color.

Hence Sender cannot lie, but can obfuscate.

Welcome to this decision-making experiment! 

Please silence and put away electronic devices. Please do not talk with other participants. 

Instructions

You will receive a $10 show-up fee, and will be able to earn more. The exact amount earned 
will depend on chance and choices made during the experiment. 

Throughout this experiment, participants will have the opportunity to play what we call 
`Sender-Receiver games’. We will explain shortly how you’ll be able to input your decisions 
as Senders and Receivers, and how participants will be paired to play these games. First, we 
describe the game itself. 

Sender-Receiver game 

The computer randomly draws one of two possible keywords, either `Red’ or `Blue’, with a 
50% chance of each. The Receiver guesses the keyword after seeing a message with 100 balls 
(of blue and red color). When the keyword is Red, the message contains 51 red balls and 49 
blue balls (i.e., red is the majority color). When the keyword is Blue, the message contains 
51 blue balls and 49 red balls (i.e., blue is the majority color). However, the balls displayed 
in the message can either be arranged by color, or in random order (see the two examples 
below for the keyword Blue).  

Arranged by Color In Random Order

How balls are displayed is impacted by the Sender’s decision in the following way. He or she 
chooses between making it more likely (51% chance) that balls are arranged by color, or 
making it more likely (51% chance) that balls are arranged in random order. The Sender can 
make his or her choice depend on whether the keyword is Red or Blue. 

Payoffs of a particular Sender-Receiver match will be computed as follows. The Sender gets 
$15 if the Receiver guesses that the keyword is Red, and $0 if the Receiver guesses Blue. The 
Receiver gets $15 for guessing the keyword correctly, and $0 otherwise. 

Figure 1: Examples of message types when the keyword is Blue.

Receiver’s message is always one of these two types, with the probability of each

type chosen by Sender. For each possible keyword (Blue and Red), Sender is asked to
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choose whether they prefer it to be more likely (with probability p > 1/2) that

the balls will be arranged by color or more likely (with the same probability p)

that the balls will be in random order. Thus Sender makes a contingent messaging

plan, tailored to each keyword. We consider three treatments, corresponding to p ∈
{51%, 70%, 90%}. The value of p is constant within each session, to avoid pollution

across precision levels and ensure sessions are not unreasonably long.

In each Sender-Receiver matchup, the computer draws the keyword (Blue or Red)

uniformly at random. Receiver’s message is drawn, given p, based on Sender’s pref-

erence for that keyword. Receiver is asked to guess the keyword, and permitted

unlimited time to examine their message before making this choice. Sender’s payoff

from the matchup is $15 if Receiver guesses Red, and $0 otherwise. The Receiver’s

payoff from the matchup is $15 for guessing the keyword correctly, and $0 otherwise.

The timing of decisions and matching process are as follows. Each session has

two phases. In the Sending phase, each subject acts as Sender and selects a contin-

gent messaging plan. Decisions from the Sending phase determine messages in the

Receiving phase. In this second phase, each subject acts as Receiver and is matched

forty times. Each match is with an independently and uniformly drawn Sender other

than themselves. In each match, the computer independently and uniformly draws

the keyword and implements the matched Sender’s decision for that keyword. That

is, the computer uses the relative likelihood the Sender chose for that keyword, to

display a message with balls arranged either by color or randomly. The Receiver has

an unlimited amount of time to examine this message before guessing the keyword.

The experiment is designed so that if Senders make communication decisions ra-

tionally, the probability Receiver gets an obfuscated screen in a match is independent

of p (indeed π(Red)(1− p) + π(Blue)p = 1
2
(1− p+ p) = 1

2
). Hence on average, there

is an equal burden for Receivers across treatments. What changes across treatments

is the distribution of keywords conditional on seeing an obfuscated screen.

No feedback is provided at any point. The experiment concludes after the Re-

ceiving phase. Subjects are given an optional exit survey. The computer determines

each subject’s payoff by randomly picking a role (Sender or Receiver) and a match

in which the subject played that role. Each subject receives their payoff from that

match plus the $10 show-up fee. Subjects are not told choices others made or payoffs

others received.

There were six sessions, two for each p ∈ {51%, 70%, 90%}. 131 subjects par-
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ticipated, with 42 in the 51% treatment, 44 in the 70% treatment, and 45 in the

90% treatment. Sessions were conducted at BUSSEL, the Brown University Social

Sciences Experimental Laboratory, in April and May 2018. Subjects were paid their

earnings in cash before leaving the laboratory.

3.2 Results

We begin by studying sending choices. There are four possible choice combinations

in our experiment, capturing for which keywords (Blue and/or Red, where Blue is

the opposing-interests state) they would like an obfuscated message to be more likely

than a transparent one. For our purposes here only, we describe these combinations

as follows: Do Not Obscure in Any State (None), Obscure in All States (All), Obscure

Only in the Common-Interests State (Common), and Obscure Only in the Opposing-

Interests State (Opposing). Table 1 below details the observed sending choices per

treatment.

Treatment None All Common Opposing Total

51% 9 2 1 30 42

70% 4 1 1 38 44

90% 8 3 1 33 45

Total 21 6 3 101 131

Table 1: Senders’ choices, by the states in which they aim to obfuscate.

As seen from Proposition 1(i), a rational and self-interested Sender should choose

Obscure Only in the Opposing-Interests State. The vast majority of Senders are in

line with this prediction in each treatment: 71.4%, 86.4%, and 73.3%, respectively. If

Senders chose randomly, only about 25% would be in line with Proposition 1(i). For

each treatment, a binomial test rejects, at all significance levels, the null hypothesis

that the percent of Senders who follow equilibrium equals that random-choice bench-

mark. The most common deviation from Proposition 1(i) is to always communicate

clearly (21.4%, 9.1% and 17.8%, respectively), which is consistent, for instance, with

altruistically easing Receivers’ perceptual burden.6

6A couple Senders per treatment aim to obfuscate in all states, which is patently inconsistent
with altruism. Each treatment has one subject who obfuscates in the common-interest state only,
which may be consistent with confusing the Blue and Red keywords’ payoffs.
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Consider now subjects’ choices as Receivers. With equally-likely states, Receivers’

equilibrium belief on ω1 is precisely the treatment’s p. To test Proposition 1(iii)−(iv),

we estimate Receivers’ aggregate success probability `p(ω) following obfuscated mes-

sages, for each state ω and treatment p. That is, `p(ωi) is the probability of choosing

action ai in treatment p, conditional on receiving an obfuscated message in state ωi.

There are 2,446 observations of Receivers’ guesses for obfuscated messages, with 805

observations from the 51% treatment, 835 observations from the 70% treatment, and

806 observations from the 90% treatment.

To estimate success probabilities, define the following dummy variables: Correcti

indicates whether the Receiver in observation i guessed correctly, Redpi indicates

whether the observation is from treatment p and the keyword was Red, and Bluepi in-

dicates whether the observation is from treatment p and the keyword was Blue. Let

the vector of explanatory variables be X = (Blue51, Red70, Blue70, Red90, Blue90).

Interacting the treatment and keyword, we estimate success probabilities through the

logistic regression:

ln

(
P(Correct = 1|X)

P(Correct = 0|X)

)
= α0+α51

BBlue
51+α70

RRed
70+α70

BBlue
70+α90

RRed
90+α90

BBlue
90,

and use heteroscedasticity-robust errors clustered at the individual level. Recalling

that the opposing-interests state ω1 is the Blue keyword, we find:

Precision p `p(ω1) `p(ω2) `p(ω1)− `p(ω2)

51% 0.837 0.783 0.054

70% 0.878 0.669 0.208

90% 0.927 0.590 0.337

Table 2: Estimated state-dependent success probabilities of Receivers per treatment,
and excess-success probabilities, rounded to three decimal places.

These success probabilities pertain to Receiver’s choices following obfuscated mes-

sages. Our framework presumes Receivers choose the correct action following trans-

parent messages. Out of the 2,794 transparent messages our Receivers faced over

three treatments, there were only 12 instances of a Receiver clicking on the wrong

keyword, a 0.0043 probability of failure.

As for obfuscated messages, are Receivers sophisticated about their meaning?
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Notice the only difference between treatments is the precision level associated with

Sender’s choice. If Receivers were strategically unsophisticated, then receiving an

obfuscated message would have no impact on beliefs and success rates for ω1 and ω2

would each be independent of p. To the contrary, the joint null hypothesis `51(ω1) =

`70(ω1) = `90(ω1) and `51(ω2) = `70(ω2) = `90(ω2) is rejected (p-value 0.0247). This

demonstrates Receivers exhibit some strategic sophistication, but does not yet imply

consistency with equilibrium play.

With equally-likely states, condition (ii) in Proposition 1 means π̂p(ω1) = p.

Conditions (iii) and (iv) are tested through weak linear inequalities over estimated

success probabilities. Condition (iv) requires estimated excess-success probabilities

to weakly increase in p. This is confirmed by Table 2. Going beyond the testable

implications, we can ask whether the inequality’s slack is also significantly different

from zero. A two-sided test of the null LHS-RHS=0 find the increase in excess-

success rate between the 51% and 90% treatments is statistically significant (p-value

0.0028). The stepwise increases, from 51% to 70%, and from 70% to 90%, do not

reach significance at the 5% level (p-values 0.0885 and 0.2007, respectively).

Condition (iii) requires `p(ω2) + π̂p(ω1)(`p(ω1)− `p(ω2))− π̂p(ω1) ≥ 0, which rep-

resents how much additional success probability is attained beyond guessing Blue

after each obfuscated message, given π̂p(ω1) = p. The point estimates strictly satisfy

these inequalities for the 51% and 70% treatments. Again going beyond the testable

implications, the slack of 0.300 for the 51% treatment and 0.115 for the 70% treat-

ment are significantly different from zero (both p-values 0.0000). The inequality is

violated for the 90% treatment by 0.007, which is not significantly different from

zero (p-value 0.6827). Of course, for fixed success rates, condition (iii) is more de-

manding as the belief on ω1 increases: at some point, it may be optimal to simply

pick a1. The precision p is the equilibrium belief, but not all subjects obfuscated

in ω1. In fact, condition (iii) would hold strictly (and with statistical significance)

under rational-expectations beliefs, and condition (iv) would be unchanged, since the

rational-expectations beliefs increase in p.7

We can also test the robustness of our conclusions for Receivers when restricting

to subpopulations for whom equilibrium beliefs may be most natural. First, subjects

7Isolating p, condition (iv) amounts to π̂p(ω1) ≤ `p(ω2)/(1 + `p(ω2) − `p(ω2)). The 95% CI
for this ratio in the 90% treatment is (0.838, 0.941). The point estimates strictly satisfy (iv) if
π̂90(ω1) ≤ 0.889, and the null of equality is rejected for π̂90(ω1) ≤ 0.838. With rational expectations,
π̂90
RE(ω1) = 0.8122 (π̂51

RE(ω1) = 0.5069 and π̂70
RE(ω1) = 0.6729).
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who themselves followed Proposition 1(i) may have realized strategic obfuscation is

the only undominated sending strategy, and expect others to realize the same. Second,

our exit survey asked subjects to describe how they thought other Senders chose. We

categorized these responses as either expecting Proposition 1(i), expecting some other

behavior, or not clearly describing any behavior. The survey was presented at the end

of the experiment, to avoid contaminating behavior in the experiment itself. It was

un-incentivized, and did not specifically ask the subject’s level of certainty regarding

their answer. Responses were categorized by hand. A response is categorized as a

“1” if the subject clearly describes the behavior in Proposition 1(i), or they followed

Proposition 1(i) themselves and say that others acted like themselves. A response is

categorized as a “0” if the subject describes another sending strategy, or the subject

did not follow Proposition 1(i) themselves and says that others like themselves. To

be conservative, we did not count towards the above categories responses that don’t

describe a sending strategy, such as “try to confuse the Receiver” or “try to make the

most money,” even though such responses are suggestive of Proposition 1(i).

Confirming the intuition above, we find that among respondents, 84.4% of those

who followed Proposition 1(i) themselves expected others to follow it. By contrast,

only 23.1% of those who violated Proposition 1(i) expected others to follow it. As

seen in Appendix B, we find very similar results when restricting to subjects who

themselves followed Proposition 1(i), or who expected others to follow it based on

their survey response. The only difference is that among subjects in the latter cat-

egory, condition (iii) in the 90% treatment is satisfied, even strictly: the LHS is

strictly larger than the RHS by 0.032 (which is also significantly different from zero,

with p-value 0.0194).

4 Discussion

We presented evidence that strategic inferences from obfuscation are used to adjust

perceptual choices. To conclude, we point to some broader welfare implications.

Suppose Senders would not voluntarily disclose information, as Receiver takes

Sender’s preferred action absent communication (π(ω2) > 1/2). What are the wel-

fare implications of mandating disclosure, if obfuscation cannot be prevented? A

naive regulator might only consider the immediate informational content of obfus-

cated messages. Suppose he assesses a consumer facing a complex product label
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incurs perception cost c for a `(ω)-chance in state ω of correctly guessing whether the

product is worth purchasing.8 Mandating disclosure, he believes, yields the following

ex-ante gain for Receiver (setting uR(mR) = 1 without loss):

[π(ω1)p (`(ω1)− c)) + π(ω2)(1− p) (`(ω2)− c)) + π(ω1)(1− p) + π(ω2)p− π(ω2), (5)

where the subtracted π(ω2) represents the success probability in the absence of dis-

closure (i.e., from choosing a2). But, as our analysis highlights, obfuscated messages

reveal information beyond their immediate content, and average Receivers factor this

in. A rational Receiver, using Bayesian-updated beliefs π̂ following obfuscation, would

instead incur perception cost ĉ to have a ˆ̀(ω) chance in state ω of correctly guess-

ing whether the product is worth buying. Receiver’s true ex-ante welfare gain from

mandated disclosure is

[π(ω1)p
(

ˆ̀(ω1)− ĉ)
)

+π(ω2)(1−p)
(

ˆ̀(ω2)− ĉ)
)

+π(ω1)(1−p)+π(ω2)p−π(ω2), (6)

Subtracting (6) from (5) gives:

π(ω1)p
(

(`(ω1)− c)− (ˆ̀(ω1)− ĉ)
)

+ π(ω2)(1− p)
(

(`(ω2)− c)− (ˆ̀(ω2)− ĉ)
)
. (7)

By Bayesian updating,

π̂(ω1) =
pπ(ω1)

pπ(ω1) + (1− p)π(ω2)
.

Dividing (7) by pπ(ω1) + (1− p)π(ω2), the sign of (7) equals the sign of

π̂(ω1)
(

(`(ω1)− c)− (ˆ̀(ω1)− ĉ)
)

+ π̂(ω2)
(

(`(ω2)− c)− (ˆ̀(ω2)− ĉ)
)
. (8)

Since a Receiver with updated beliefs π̂ prefers the perception strategy yielding

(ˆ̀(ω1), ˆ̀(ω2)) over one yielding (`(ω1), `(ω2)),

π̂(ω1)ˆ̀(ω1) + π̂(ω2)ˆ̀(ω2)− ĉ ≥ π̂(ω1)`(ω1) + π̂(ω2)`(ω2)− c.

Hence (8) is at most zero. We conclude a naive regulator underestimates Receivers’

8In our context, this amounts to guessing or eliciting success probabilities and perception costs
in an decision-making experiment à la Caplin and Dean (2015), with no Sender.
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welfare gain from mandating disclosure; hence overlooking strategic sophistication can

lead to misguided policy decisions when weighing Receiver benefits against welfare

implications for Sender and costs of mandating disclosure.

Our analysis focused on a persuasion payoff structure. Keeping Receiver’s payoffs

unchanged, we could vary the alignment of Sender’s and Receiver’s interests. They are

opposed (common) if Sender’s payoff in state ω2 (resp., ω1) were insteadmS if Receiver

chooses a1 and 0 otherwise. Sender’s dominant strategy is to obfuscate (clarify) when

interests are opposed (resp., common). Hence, under each of those payoff structures,

Receiver’s updated belief conditional on receiving an obfuscated message coincides

with her prior π. Because Receiver’s choice of perception strategy for an obfuscated

message depends only on her beliefs, she chooses the same perception strategy, with

success probabilities `, under both opposed- and common-interests payoff structures.

Our paper highlights that Receiver’s success probabilities ˆ̀ under persuasion-payoff

structures are typically different from `: rational Receivers can optimally adjust their

perception strategy given strategic inference. Not recognizing this, one might suspect

success probabilities increase as Sender’s and Receiver’s preferences get more aligned

(from opposed interests to persuasion, and from persuasion to common interests).

That intuition turns out to be wrong: greater alignment of preferences does not

guarantee greater Receiver success. Imagine Receiver’s perceptual costs are such that

in an individual decision-making setting with the prior π(ω2) = 51%, she optimally

uses a symmetric strategy with a 0.9-success probability in each state. This would

then be her optimal perception strategy in games with common or opposed interests,

including when precision is p = 0.8. In a persuasion game with p = 0.8, she prefers

to simply choose action a1. Her success probability is 92% (98%) for ω1 and ω2

when interests are opposed (resp. common). For the persuasion-payoff structure, her

success probability is 1 in ω1 and 80% in ω2. Hence actual success can decrease in ω2

(ω1) when moving from opposed interests to persuasion (resp., persuasion to common

interests). In fact, even the expected success probability can decrease: 0.51∗0.8+0.49

for the persuasion case is strictly inferior to 0.92 in the case of opposed interests.
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Appendix

A. Proof of Proposition 1

It remains to show (iii) and (iv) capture the empirical content of Receiver’s problem

given his belief from (ii).

Step 1: Receiver’s choices are consistent with costly information acquisition under

rational-expectations beliefs if, and only if, they are consistent with costly-information

acquisition in a transformed individual decision-making problem with uniform beliefs

about states and state-dependent payoffs. Letting ∆uji = 2π̂j(ωi)(uR(mS) − uR(0)),

Receiver’s objective (3) for persuasion game j is:

uR(0) +
1

2
µ(S1|ω1)∆uj1 +

1

2
µ(S2|ω2)∆uj2 − cR(S1,S, µ),

and the constraint Receiver prefers action ai following σ ∈ Si is µ(σ|ωi)∆u
j
i ≥

µ(σ|ω−i)∆uj−i, ∀σ ∈ Si, ∀i = 1, 2. Thus, the problem in game j is equivalent to

one with uniform beliefs over states, after rescaling the payoff gain in state i from

choosing correctly to ∆uji .

Step 2: Using Caplin and Dean (2015, Theorem 1), consistency in the transformed

problem is equivalent to Receiver’s data satisfying their NIAC and NIAS conditions.

Translated to our setting and notation, and using p > 1/2, NIAS corresponds to

condition (iii) in Proposition 1, while NIAC corresponds to the condition that for

any integer J ≥ 2 and any J-length cycle (p1, p2, . . . , pJ , p1) of persuasion games,

J∑
j=1

(
`j(ω1)− `j+1(ω1)

)
∆uj1 ≥

J∑
j=1

(
`j(ω2)− `j+1(ω2)

)
∆uj2, (9)

where `J+1 = `1.

Step 3: In our setting, (9) reduces to the pairwise condition of Proposition 1(iv).

To see this, rewrite (9) as:

J∑
j=1

(
`j(ω1)− `j+1(ω1)− `j(ω2) + `j+1(ω2)

)
π̂j(ω1) ≥

J∑
j=1

(
`j(ω2)− `j+1(ω2)

)
= 0,
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using π̂j(ω2) = 1− π̂j(ω1) and cancelling the factor 2(uR(mS)−uR(0)) in the ∆uji ’s.
9

Letting ∆`j = `j(ω1)− `j(ω2), (9) is then equivalent to:

J∑
j=1

(
∆`j −∆`j+1

)
π̂j(ω1) ≥ 0. (10)

For J = 2 (a cycle (pj, pk, pj)), condition (10) reduces to condition (iv):

(π̂j(ω1)− π̂k(ω1))(∆`j −∆`k) ≥ 0. (11)

We prove by induction that if (11) holds for all pairs of persuasion games, then (10)

holds for any cycle length J > 2. Suppose (10) holds for cycles of length J − 1, and

consider one of length J . We may translate the elements of the cycle so the J-th

element corresponds to the highest π̂j (the sum in (10) is invariant to where the cycle

begins). Notice
∑J

j=1 (∆`j −∆`j+1) π̂j(ω1) can be decomposed into:

J−1∑
j=1

(
∆`j −∆`j(mod(J−1))+1

)
π̂j(ω1)−

(
∆`J−1 −∆`1

)
π̂J−1(ω1) (12)

+
(
∆`J−1 −∆`J

)
π̂J−1(ω1) +

(
∆`J −∆`1

)
π̂J(ω1).

The first term in (12) corresponds to (10) for the (J−1)-length cycle (p1, p2, . . . , pJ−1, p1)

omitting pJ ; this is nonnegative by the inductive hypothesis. To reconstruct the sum

in (10) for the original cycle, the second term removes the link from pJ−1 to p1, and

the next two terms add back links from pJ−1 to pJ , and from pJ to p1. These final

three terms in (12) sum to
(
π̂J(ω1)− π̂J−1(ω1)

) (
∆`J −∆`1

)
. Given our numbering

scheme, π̂J(ω1) is maximal among all π̂j(ω1), so the first factor in this product is non-

negative. Similarly, the pairwise condition (11) applied to (1, J) ensures ∆`J ≥ ∆`1,

so the second factor is nonnegative. Thus (12) is nonnegative, implying (10) holds

for the J-length cycle.

9Our result and proof extend when Receiver’s benefit from a correct guess is state dependent, by
defining ∆uji = 2π̂j(ωi)(uR(mS,i)−uR(0)) and ∆`j = `j(ω1)(uR(mS,1)−uR(0))−`j(ω2)(uR(mS,2)−
uR(0)).
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B. Analysis for Receivers who expect Proposition 1(i)

Below we estimate success rates and test (iii)− (iv) for subjects who followed Propo-

sition 1(i) themselves, and for subjects whose survey response expresses that Senders

followed Proposition 1(i). As will be seen, we find very similar results. We use the

same logistic regression model to estimate success rates, again with heteroscedasticity-

robust standard errors clustered by individual. We estimate:

Based on Sending choice Based on survey response

Precision p `p(ω1) `p(ω2) `p(ω1)− `p(ω2) `p(ω1) `p(ω2) `p(ω1)− `p(ω2)

51% 0.889 0.775 0.114 0.849 0.759 0.090

70% 0.878 0.635 0.243 0.879 0.627 0.252

90% 0.942 0.510 0.432 0.971 0.583 0.387

Table 3: The estimated state-dependent success probabilities of Receivers per treat-
ment, and excess-success probabilities, estimated only among the subpopulation of
subjects who followed Proposition 1(i) as Senders, and among the subpopulation of
subjects who anticipated Proposition 1(i) according to the exit survey.

Consider first subjects who followed Proposition 1(i) themselves. Among these

subjects, we have 1,896 observations of choices in obfuscated messages, with 581

in the 51% treatment, 731 in the 70% treatment and 584 in the 90% treatment.

For each pair of treatments, among this subset of subjects the joint null hypothesis

that `51(ω1) = `70(ω1) = `90(ω1) and `51(ω2) = `70(ω2) = `90(ω2) is rejected (p-

value 0.0295). We use π̂p(ω1) = p, following condition (ii). As seen from Table 2,

the excess-success probabilities indeed increase with the precision level p, verifying

condition (iv). The excess success probability between 51% and 90% is significantly

different from each zero (p-value 0.0034); p-values are 0.2173 for between 51% and

70%, and 0.0922 for between 70% and 90%. As for condition (iii), the LHS is strictly

larger than the RHS by 0.323 for the 51% treatment (p = 0.0000) and 0.105 for the

70% treatment (p = 0.0002), and is smaller by 0.0015 for the 90% treatment, which

is not statistically different from zero (p = 0.9307).

Now consider subjects whose survey response indicates they think other Senders

followed Proposition 1(i). Among these subjects, we have 1,629 observations of

choices in obfuscated messages, with 478 in the 51% treatment, 657 in the 70%

treatment and 494 in the 90% treatment. For each pair of treatments, among this

24



subset of subjects the joint null hypothesis that `51(ω1) = `70(ω1) = `90(ω1) and

`51(ω2) = `70(ω2) = `90(ω2) is rejected (p-value 0.0118). We use π̂p(ω1) = p, following

condition (ii). As seen from Table 2, the excess-success probabilities indeed increase

with the precision level p, verifying condition (iv). The excess-success probabilities

are statistically different when comparing the 51% treatment with the 90% treatment

(p-value 0.0191); p-values are 0.1748 for between 51% and 70%, and 0.2825 for be-

tween 70% and 90%. As for condition (iii), the LHS is strictly larger than the RHS

by 0.295 for the 51% treatment (p-value 0.0000) and by 0.104 for the 70% treatment

(p-value 0.0010), and by 0.032 for the 90% treatment (p-value 0.0194).

C. Experimental interface and instructions

The next two pages display the paper instructions that were handed out for the

experiment. The remaining pages display screenshots of the z-Tree experimental

interface. Both are for the 70% treatment. The other treatments only change the

value 70% to either 51% or 90%, as applicable.



Welcome to this decision-making experiment! 

Please silence and put away electronic devices. Please do not talk with other participants. 

Instructions 

You will receive a $10 show-up fee, and will be able to earn more. The exact amount earned 
will depend on chance and choices made during the experiment. 

Throughout this experiment, participants will have the opportunity to play what we call 
`Sender-Receiver games’. We will explain shortly how you’ll be able to input your decisions 
as Senders and Receivers, and how participants will be paired to play these games. First, we 
describe the game itself. 

Sender-Receiver game 

The computer randomly draws one of two possible keywords, either `Red’ or `Blue’, with a 
50% chance of each. The Receiver guesses the keyword after seeing a message with 100 balls 
(of blue and red color). When the keyword is Red, the message contains 51 red balls and 49 
blue balls (i.e., red is the majority color). When the keyword is Blue, the message contains 
51 blue balls and 49 red balls (i.e., blue is the majority color). However, the balls displayed 
in the message can either be arranged by color, or in random order (see the two examples 
below for the keyword Blue).  

Arranged by Color In Random Order

How balls are displayed is impacted by the Sender’s decision in the following way. He or she 
chooses between making it more likely (70% chance) that balls are arranged by color, or 
making it more likely (70% chance) that balls are arranged in random order. The Sender can 
make his or her choice depend on whether the keyword is Red or Blue. 

Payoffs of a particular Sender-Receiver match will be computed as follows. The Sender gets 
$15 if the Receiver guesses that the keyword is Red, and $0 if the Receiver guesses Blue. The 
Receiver gets $15 for guessing the keyword correctly, and $0 otherwise. 



How will the Sender-Receiver games be played? 

To allow everyone to have a chance to play as a Sender and a chance to play as a Receiver, 
the session is split into two phases: a Sending phase and a Receiving phase. Decisions made 
during the Sending phase will be used to determine messages in the Receiving phase of the 
experiment. 

(a) Sending Phase: 

In this phase, each participant acts as a Sender, and decides whether balls in the Receiver’s 
message are more likely (70% chance) to be arranged by color, or more likely (70%) to be 
displayed randomly. You’ll be asked to make this decision twice, first for the keyword Blue, 
and second for the keyword Red. 

(b)Receiving Phase: 

In this phase, each participant acts as a Receiver. You will be matched 40 times, each time 
with a randomly drawn Sender other than yourself.  

In each match, the computer randomly draws the keyword (with a 50% chance of Blue and a 
50% chance of Red), and implements the Sender’s decision for the drawn keyword. That is, 
the computer uses the relative likelihood the Sender picked for that keyword, to display a 
message with balls arranged either by color, or randomly. You’ll be asked to guess the key-
word in each match. 

What happens at the end of the experiment? 

Once the Receiving Phase is complete, there will be a short and optional exit survey. Your 
participation is voluntary and does not affect your payoff.  

At the end of the experiment, the computer randomly picks a role for you (Sender or Re-
ceiver) and randomly chooses one match in which you played that role. You will receive your 
payoff from that match in addition to the $10 show-up fee. All identities remain anonymous. 
No one will learn what role you played or what payoff you earned. 

We are almost ready to start the experiment. Before doing so, there will be a short quiz to 
check your understanding of some key features of the experiment, as well as a chance to 
familiarize yourself with the interface.
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