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Abstract

We develop a theory of credible skepticism in organizations to explain the main

trade-o↵s in organizing data generation, analysis and reporting. We study a designer-

analyst-principal game where the designer selects the information privately observed by

the analyst who can misreport it at a cost, while the principal can (possibly imperfectly)

audit the analyst’s report. We study the principal’s problem of how to allocate tasks,

how much to audit the report, whether to limit her own discretion, or even shape the

analyst’s costs of misreporting. We show that motivating informative experimentation

while discouraging misreporting are often conflicting organizational goals. As a result,

the principal foregoes a perfect audit and prefers to separate the tasks of experimental

design and analysis to incentivize experimentation. Finally, we provide conditions

under which the optimal organization involves a dual internal-external audit system.
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1 Introduction

Employees need to recognize that not all numbers are created equal–some are more

reliable than others.

Shah, Horne and Capellá, “Good Data Won’t Guarantee Good Decisions”,

HBR (April 2012)

The Digital and ICT revolution has made organizations awash with data by drastically

reducing the costs of data gathering, storage, access, and analysis. It has also changed

how managers make decisions, relying less on opinions and intuition and more on insights

derived from this data.1 In spite of these improvements, the information that reaches decision

makers is still hampered by incentive conflicts: conflicts of interest over decisions result in

disagreement over which data to collect and how to analyze it, and creates frictions when

communicating its findings to decision makers. In this paper, we develop a theory of the

organization of data analytics in the face of these frictions.

The Covid-19 pandemic o↵ers an example of how conflicting preferences in (public) or-

ganizations a↵ect data gathering, analysis and communication. Politicians, business owners

and ordinary citizens had to make decisions on whether to re-open, keep a moderate lock-

down, or change to a more restrictive lockdown. A key factor was information about the

spread of the virus. Nevertheless, in the United States, there were significant di↵erences in

how each state collected data and which data was made available to the public.2 There were

also di↵erences in how countries recorded Covid-19 deaths and related statistics, even among

members of the European Union (Robbins and Reuben, 2020). In addition, numerous states

were accused of manipulating data to deliberately make things look better than they were

1Brynjolfsson, Hitt, and Kim (2011) and Brynjolfsson and McElheran (2016) report rapid and widespread

adoption of Data-Driven Decision Making (DDM) practices in organizations, where the rate of adoption is

heavily influenced by a series of complementary organizational practices.
2For example, Johns Hopkins University lists the main approaches to compute the test positivity rate–

see https://coronavirus.jhu.edu/testing/di↵erences-in-positivity-rates . The methodology can consider the

number of positive tests or consider the number of people who test positive, and the methodology can

consider RT-PCR tests only, or also include antigen tests. Only 10 out of the 50 states report the data

needed to compute their Approach 2.
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(Michelle R. Smith and Amy, 2020), while there were reports of data manipulation in other

countries.3

Communication frictions in (private) organizations also manifest themselves in managers’

mistrust of data–a recent survey by KPMG reports that only one third of respondents trust

the insights generated from their business operations4–but also in the underutilization of

some of the data stored by firms–so called “dark data” that is unstructured, improperly

recorded, or simply never actively used by members of the organization.5

We are interested in understanding optimal organizational practices in the face of these

conflicts. For instance, fostering trust in analytics calls for policies that ensure data ac-

curacy and integrity—e.g., through regular examination of data, access management, and

audit trails—or that prevent data tampering (or minimize its e↵ect). The adoption of new

technologies such as blockchain can eliminate data tampering within organizations, giving

decision makers access to information that is known to be correct (Tapscott and Tapscott,

2017). Likewise, data underutilization can be remedied by incentivizing agents to provide a

more insightful analysis; e.g., by rewarding them for experimenting through the promotion

of the products, innovations, and business ideas that result from their analysis.6

We show that reducing data tampering poses conflicting organizational goals under del-

egated experimentation: organizational practices that ensure data integrity and truthful

reporting can also reduce how much information agents extract from the data in the first

place. To wit, agents may gather “just enough” evidence if decision makers find them

reliable. We argue that in the face of unresolved conflict, promoting a moderate sense of

mistrust can create a culture of “healthy” skepticism in the organization: managers can

3For example, there are claims of data manipulation in Brazil (Phillips, 2020) and Russia (Michelle

R. Smith and Amy, 2020).
4See KPMG, 2016, 2018. There are multiple factors behind this mistrust of data: data breaches and

inaccuracies–questioning the integrity of data–but also the lack of experience with certain advanced analytics

that lead managers to regard them as a “black box” and doubt the value of their results (KPMG, 2018).
5Firms routinely generate and store data from its normal operations which is improperly recorded–e.g.,

machine and sensor data from devices (IoT), website access and browsing data, social media–and comprises

a substantial fraction of all data stored by a firm. See Hand (2020) for an analysis of the sources and

implications of the underutilization of this data in organizations.
6Most data analytics is used for process or product improvement or related to other types of innovation–

see Wu, Hitt, and Lou (2020).
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refrain from adopting agents’ self-serving recommendations, for instance to launch a new

product or project, forcing the latter to provide stronger evidence backing them. However,

to credibly do so, firms have a preference for limiting decision makers’ ability to audit or

evaluate such recommendations.

We see data analytics as composed of di↵erent tasks/job roles: (i) a data architect

specifying which data to collect and how to process it (experimental design), and (ii) a

data analyst who processes data according to the specified design and reports the findings

to decision makers (analysis/reporting). Formally, we model data analytics as a designer-

analyst-principal game:7 (i) a principal decides whether to deviate from a status quo decision

dS by scaling up (dH) or scaling down (dL) operations; (ii) a designer (data architect) and

a (data) analyst have di↵erent preferences than the principal and prefer scaling-up to the

status quo, with scaling-down their least preferred choice;8 (iii) to persuade the principal,

the uninformed designer strategically designs an experiment that reveals information about

a payo↵-relevant state—as in Kamenica and Gentzkow (2011), KG henceforth; (iv) the

outcome of this experiment is privately observed by the analyst who, before submitting his

report, finds how costly it would be to misrepresent (tamper) its outcome. This simple

setup captures the main experimentation-tampering trade-o↵: the principal needs to strike

a balance between inducing the designer to select a more informative experiment while at

the same time restraining the analyst from tampering. To manage this trade-o↵, we explore

several organizational levers: (i) task allocation—namely, whether to integrate or separate

the roles of the data architect and the data analyst– (ii) monitoring—how much to audit the

analyst’s report (auditing intensity is given by the probability � 2 [0, 1] that the principal

also observes the actual experimental outcome, thus both detecting tampering and muting

its e↵ect on decision making); (iii) discretion–whether to limit the options available to the

principal, and (iv) a system of punitive measures that punishes tampering.

Agents limit the strength of the evidence supporting scaling-up in order to increase its

probability–see KG–but also misrepresent unfavorable evidence if auditing is imperfect. In

7Alternatively, borrowing from the strategic communication literature, this would be a designer-sender-

receiver game.
8Agents may favor scaling-up because of a preference for empire building, or because their human capital

is tied to this decision, or as a result of improved outside opportunities.
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equilibrium, the designer’s experiment leads to a recommendation in {dL, dH} (“up-or-down”

experiment) or in {dS, dH} (“status-quo” experiment); the principal follows the analyst’s ad-

vice when recommending dS or dL but may refrain from doing so when recommending dH

unless it is confirmed by a conclusive audit. Reducing auditing intensity invites misrepresen-

tation, but also allows the principal to credibly mistrust “favorable” evidence after an incon-

clusive audit. We show that the spectre of a “shadow of a doubt” unambiguously pushes the

designer (regardless of task allocation) to experiment more–i.e., to provide stronger evidence

when recommending dH . Moreover, as tampering costs are only incurred by the reporting

agent, integrating design and analysis leads the designer to economize on tampering costs

by shifting to less informative experiments.

Firms must compare the gains from improved experimentation to the losses from in-

creased tampering when organizing data analytics. Our first result looks at a principal

that “organizes to innovate”–i.e, a case in which the only alternative to the status-quo is

to scale-up. Consistent with our theme of “credible skepticism,” she commits to an imper-

fect audit (�⇤
< 1) as long as there is a positive probability of low tampering costs, and

prefers to separate the design task from the analysis/reporting task. This insight resonates

with organizations that centralize design in a corporate headquarters while coming short of

implementing water-tight auditing measures.9

Next, we look at a principal that “organizes for scale”–i.e., she entertains both scaling-up

or down as viable alternatives to the status-quo. It is still true that separating tasks and

committing to an imperfect audit leads to stronger evidence backing a dH recommendation,

but the principal must guard against “adverse switches”–i.e., a switch from an “up-or-down”

experiment to a less informative “status-quo” experiment– and it may now be optimal for

her to integrate tasks and to perfectly audit the analyst’s report (set �
⇤ = 1). Adverse

switches occur because agents promoting dH are more willing to compromise on the status

quo than the principal. She can avoid such compromise by ruling out the status-quo as

an option; in fact, if the principal can commit to ruling-out decisions (i.e., to reduce her

discretion), then she prefers an imperfect audit (�⇤
< 1). Thus, in this context, discretion

9For instance, Mckinsey and Co. reports on several firms centralizing data analytics around a center of

excellence (CoE) tasked with homogenizing data analytics and supporting the di↵erent business units. See

McKinsey and Co., 2018.
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and auditing-intensity act as complements.

Our theory of credible skepticism builds on the premise that allowing some tampering

can prove beneficial to firms as it provides decision makers with commitment power to reject

self-serving recommendations issued with weak supporting evidence. Thus, firms where ex-

perimentation is also delegated to agents would like to incentivize some tampering. We show

this by solving for the optimal organization when the firm can specify the distribution of the

analyst’s tampering costs.10 Optimally, the firm both makes low tampering costs su�ciently

likely and limits its auditing intensity. Under this scheme, the designer always selects a fully

informative experiment. That is, organizations in our model would take actions to maximize

experimentation while being subject to moderate levels of data misrepresentation. We show

that this optimal organization can be implemented through a decoupled internal-external

audit system.

We present the model in Section 2. Section 3 characterizes the equilibrium in the design

and communication subgame for a fixed organizational structure, and Section 4 analyzes the

e↵ect of task allocation and auditing on experimental design. Section 5 covers our main

insights on the optimal organization of data analytics. Section 6 discusses several extensions

of the model and we conclude with a discussion of the related literature in Section 7. All

proofs are in the Appendices.

2 Model

A principal relies on the information gathered, analyzed and communicated by expert, albeit

biased, agents to maintain the current “status quo” or to switch to one of two alternatives.

To model the di↵erent tasks of data analytics, we introduce a “designer-analyst-principal”

game in which the data designer (he) specifies what information the data analyst (he) will

privately observe and report to the principal (she) prior to making the decision.

Preferences and Prior Beliefs: Players are expected utility maximizers. The state space is

binary, with typical realization ✓ 2 ⇥ = {0, 1}, and players hold a common prior µ = Pr[✓ =

10For instance, through a by-law that defines the punishment for tampering, or through data security

measures that make tampering more or less costly and more or less easy to detect.
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Figure 1: Principal and Agents’ payo↵s

1]. The principal selects d from {dL, dS, dH}, and has preferences characterized by u(d, ✓), 11

u(d, ✓) =

8
>>>>>><

>>>>>>:

q
H

for d = dS,

✓ for d = dH ,

↵L for d =dL and ✓ = 0,

↵L � I{↵L�q
H
}
↵L�q

H

q
S

for d =dL and ✓ = 1,

with 0 = q
L
 q

S
< q

H
< 1. In words, the principal decides either to keep the status quo dS,

to scale-up operations by choosing dH , or to scale-down by choosing dL–Figure 1 represents

the principal’s payo↵ as a function of her posterior q. We will consider two cases. First, if

↵L < q
H
, then the principal “organizes to innovate” as she e↵ectively chooses between dS or

dH (i.e., whether to approve the “innovation” dH), selecting dH only if q 2
h
q
H
, 1
i
. Second,

if ↵L � q
H
, then the principal “organizes for scale:” if she deviates from dS, then she could

either scale-up (dH), or scale-down (dL), selecting dL only if q 2
h
q
L
, q

S

i
. In either case, q

i

represents the minimum posterior belief for which the principal still selects di.

We capture the conflict of interest between the agents and the principal by positing

that the designer and the analyst receive a state-independent payo↵s v(di, ✓) = vi with

0 = vL < vS < vH , so that they benefit from persuading the principal to choose “higher”

decisions. To focus on the more interesting case, we assume that µ 2 (q
S
, q

H
) so that the

11IA represents the indicator function of the set A; i.e., IA(x) = 1 if x 2 A and IA(x) = 0 if x /2 A.
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principal retains the status quo in the absence of any report, and we let �i ⌘ vH � vi,

i 2 {L, S} be an agent’s gain from inducing his preferred decision dH when the alternative

is di.

Strategic Experimentation, Communication and Tampering: All players process informa-

tion according to Bayes’ rule. We consider three stages to this model of data analytics.

First, in the experimental-design stage the data designer (data architect) specifies which

data to gather and how it will be processed: he selects an experiment ⇡, consisting of

a finite outcome space S(⇡) and a family of likelihood functions over S(⇡), {⇡ (·|✓)}
✓2⇥,

with ⇡ (·|✓) 2 �(S(⇡)). Given the common prior, we can without loss set S(⇡) ⇢ �(⇥),

so that ⇡ = {q,Pr [q]}
q2S(⇡) is expressed as a distribution over posterior beliefs q induced

by observing the experimental outcome, with S(⇡) indexing these outcomes. We say that

the designer “experiments more” when he selects a Blackwell-more informative experiment.

We make two important assumptions regarding experimental design. First, as in KG, the

designer can choose any experiment that is correlated with the state. Second, experiments are

costless to the designer. This can be the case, for instance, if a fully informative experiment

is originally available to the designer and he can garble its outcome at no cost.

Second, the design stage is followed by an analysis/communication stage. The analyst

privately observes the outcome s 2 S(⇡)–we refer to s as the analyst’s “type”– and sends a

message m 2 S(⇡) to the principal, which is potentially subject to misrepresentation: the

analyst can tamper with the true outcome s by reporting instead s
0 2 S(⇡), s0 6= s. We will

work with a reduced-form model of tampering: the analyst incurs a cost c if he tampers,

with c unknown at the design stage and distributed according to F (c), and independent of

the experiment ⇡. This can be micro-founded as follows. We see tampering as a question of

“opportunity:” there are potentially many di↵erent tampering methods a 2 A each carrying

a di↵erent cost c (a). These costs can be physical costs–e.g., e↵ort in “doctoring the books”

or “creating a credible alternative story”–tied to punishments if caught misrepresenting–

with the severity of the punishment varying with the tampering method–or even psychic

costs of misrepresentation.12 However, only at the analysis/communication stage does the

12Gneezy (2005) and Abeler, Nosenzo and Raymond (2020) show experimentally that individuals have

some innate preference for honesty.
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analyst learn which subset of tampering methods A
0 ⇢ A are actually feasible,13 selecting

the one with the lowest cost if he tampers. From an ex ante perspective we would then

have F (c) = Pr [mina2A0 c (a)  c]. We will assume that F is absolutely continuous, with

F̄ (c) ⌘ 1� F (c).14

We make two assumptions regarding these tampering costs. First, they are always borne

by the analyst when he tampers. In Section 6.1, we show that the main insights of our analysis

hold if the analyst incurs the cost c only if tampering is uncovered through auditing. Second,

the analyst bears the same cost independently of the actual message sent. In other words,

the decision of how to misrepresent the state only depends on the equilibrium inference of the

principal, rather than the costs/punishments specifically associated to di↵erent messages.

In the third stage, the decision making stage, the principal observes both the designer’s

experiment and the analyst’s message. Key in our model is the principal’s ability to evaluate

the truthfulness of this message, and undo the e↵ect of any misrepresentation, by auditing

the experiment. We assume that with probability � the audit is conclusive and the principal

learns the actual experimental outcome, while with probability 1�� the audit is inconclusive

and she gains no new information. Importantly, what can be learned from an audit is con-

strained by the informativeness of ⇡. Thus, auditing di↵ers from seeking a “second opinion”

in which the principal may have access to a separate information source.15 If the audit is

conclusive, the principal is informed (of s) and selects (a possibly mixed) dI(m, s) which

depends on the message m and the outcome s. If the audit is inconclusive, she is uninformed

and selects dU(m). To lighten the exposition, we say that “the message/recommendation is

(un)audited” when the audit is (in)conclusive.

Organizational Design: Agents perform two tasks—experimental design and analysis—

13The fact that some actions may not be available ex post is similar to the modeling of productive activities

in Chassang (2010).
14Our modeling approach captures the idea of uncertain returns from tampering owing to uncertain tam-

pering costs. An alternative way to micro-found our model is to consider that there is only one tampering

action, with deterministic cost c
0, but the decision-payo↵ to the sender is given by ↵v(d) where ↵ is un-

known at the time of the design but commonly known to be distributed according to F
0
. Then, this model

is equivalent to ours by defining c ⌘ c
0
/↵.

15See, for instance, Kolotilin, 2018, Kolotilin, Mylovanov, Zapechelnyuk, and Li, 2017, and Guo and

Shmaya, 2019 for information-design models where the receiver is privately informed.
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and the principal has several organizational levers to incentivize them. First, she sets the

auditing intensity � 2 [0, 1]. For instance, she can assign resources at the outset that are

used later to audit the analyst’s report, thus, dictating the likelihood of a conclusive audit.

An important assumption is that the principal can commit to an imperfect audit, i.e., to

� < 1. Otherwise, once the designer selects an experiment, she can completely eliminate the

e↵ect of tampering by perfectly auditing the analyst’s message. In anticipation of a perfect

audit, however, the designer would select the perfect commitment experiment as in KG. To

see this, and for future reference, consider experiments {q
L
, q

H
} and {q

S
, q

H
} with

p
C

i
⌘ Pr[s = q

i
] =

q
H
� µ

q
H
� q

i

, (1)

the probability of outcome s = q
i
, i = L, S. If � = 1, then the designer selects the experiment

{q
i
, q

H
} that minimizes pC

i
�i. If the organization hopes to induce more experimentation, it

must be able to guarantee that the success rate of an audit is limited to �. Our interpretation

is that further resources cannot be deployed once the auditing intensity is announced, so

that � cannot be increased neither in reaction to the chosen experiment, nor to the reported

outcome.

Second, the principal can choose to either integrate design and analysis/reporting, by

letting the same agent perform both tasks, or to separate them, by allocating each to a

di↵erent agent.16 Let k denote the principal’s task allocation, with k 2 (I,S). Instead

of changing the number of agents for each task allocation, we keep our designer-analyst-

principal game throughout all task allocations and assume that the designer also bears the

tampering costs incurred by the analyst under integration (k = I), while he does not bear

them under separation (k = S). In terms of organizational structure, task separation would

correspond to a firm in which experimental design is centralized in a corporate headquarters

and the designer mandates each operating unit which analysis to perform, while the actual

data collection and reporting is decentralized to those units.17

16A maintained assumption of our analysis is that task allocation does not a↵ect the agents preferences

over decisions. That is, task allocation cannot be used to reduce the conflict of interest between principal

and agents.
17For instance, the design of customer surveys or the specification of which data to be collected by ERP

systems could be performed by an enterprise-wide data architect, while the analysis of the results is performed

at the divisional level. Integration would have both tasks been decentralized to lower level units, so that
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Timing: The principal selects whether to separate or integrate tasks and the auditing

intensity �. Then, the designer publicly selects ⇡ = {q,Pr [q]}
q2S(⇡)—this is the design

subgame. The communication subgame follows: Nature draws ✓ and the analyst privately

observes outcome s 2 S(⇡), generated according to ⇡, and the cost c, and selects a message

m 2 S(⇡). The principal observes the actual outcome s with probability � and, given the

outcome of the audit and the analyst’s message, she updates her beliefs according to Bayes’

rule, selects a decision, payo↵s are realized and the game ends. We look for Perfect Bayesian

Equilibria that constitute a Perfect Bayesian Equilibrium in every subgame.

3 Tampering and Equilibrium Experimentation

We start the organizational-design analysis by studying how agents respond to a given orga-

nizational structure. That is, we study the equilibria in the designer-analyst-principal game

corresponding to a fixed task allocation and auditing intensity. We work backwards by first

characterizing the equilibria in the communication subgame for any ⇡, which will determine

both expected tampering and the distribution over the principal’s decisions. We then turn

to the designer’s optimal choice by introducing the set of robust experiments—a reduced set

of experiments with binary outcomes which contains a solution to the designer’s problem.

3.1 Equilibrium Tampering

The analyst decides whether to tamper by comparing the gain from misrepresenting his

type to the realized tampering cost. Let �̄ be the maximum gain from tampering in any

equilibrium (both on- and o↵- the equilibrium path).18 Assumption 1 ensures a positive

local agents have discretion in deciding which data to collect and which analysis to perform. As an example

in the public sector, David Cameron created the Behavioral Insights Team (BIT) under the supervision of

the Cabinet O�ce (see Alonso and Câmara, 2016 for details). In an example of task-integration, the BIT

would both design and conduct small-scale experiments for the UK Government.
18If the audit is inconclusive, the largest gain from tampering comes from inducing the principal to select

dH when truthful communication would have led to his least preferred decision. Tampering incentives are

also shaped by the principal’s decision after a conclusive audit: if the analyst’s type is a “threshold” type

q
i
, i = {S,H}, then the principal may punish/reward him after a conclusive audit by randomizing di↵erently

between decisions as a function of his report. Then, the maximum gain from tampering is �̄ = (1� �)�S

10



probability of truthful reporting for every experiment and experimental outcome, by positing

the existence of tampering costs that make tampering unprofitable for every analyst’s type.

Assumption 1 (All messages on-path) The tampering cost distribution satisfies

F̄ (�̄) > 0. (2)

In the absence of threshold types–i.e., whenever q
i
/2 S(⇡), i = {S,H}–the analyst that

tampers sends a message that induces the “highest” decision after an inconclusive audit.

Thus, if di↵erent types choose to tamper by sending di↵erent messages, it must be that they

all induce the same unaudited decision (or mixtures over decisions). With this observation,

we now characterize tampering behavior in the communication subgame.

Proposition 1. Suppose that Assumption 1 holds. Then, in any equilibrium of the commu-

nication subgame following the choice ⇡ = {q,Pr [q]}
q2S(⇡) we have:

(i) For each q 2 S(⇡), there exists c̄(q), with F̄ (c̄(q)) > 0, such that m⇤(q, c) = q if c > c̄(q)

and m
⇤(q, c) 6= q if c < c̄(q);

(ii) Let MT (⇡) ⇢ S(⇡) be the set of “tampered outcomes:”

MT (⇡) = {q 2 S(⇡) : 9(qz, c), m
⇤(qz, c) = q, qz 6= q} .

If dI(m, q
i
) is independent of m whenever q

i
2 S(⇡), i = {S,H}, then for q, q

0 2 MT (⇡) (a)

dU(q) = dU(q0), and (b) c̄(q) = 0.

Assumption 1 guarantees that all messages in S(⇡) are sent with positive probability

on the equilibrium path. This limits the scope of the principal to discipline the analyst’s

tampering by holding “optimistic or pessimistic” beliefs after an o↵-the-equilibrium-path

message. Then, Proposition 1-i shows that the analyst’s tampering behavior is monotonic:

he reports truthfully if the realized cost exceeds an outcome-dependent threshold, c̄(q), and

will surely tamper if the cost falls below this threshold. Proposition 1-ii(a) makes formal

if the principal organizes to innovate, but �̄ = �L � ��S if she organizes for scale. To see this last case,

consider the experiment
n
q
S
, q

o
with q > q

H
, and the following sequentially-rational decision making: after

a conclusive audit, the principal selects dH if s = q but if s = q
S
she selects dL if the analyst truthfully

reported m = q
S
and dS if he tampered m = q. If the audit is inconclusive, and the only tampered outcome

is q, the principal’s consistent belief after an unaudited m = q
S
must be precisely q

S
, in which case she

selects dL. Then, the gain from tampering after s = q is �vS + (1� �)vH � vL = �L � ��S .
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the above-mentioned property that “tampered outcomes”–messages that are transmitted by

some other type with positive probability—may induce di↵erent posterior beliefs but must all

lead to the same unaudited mixture over decisions; this is true as long as the principal does

not condition his audited decision on the analyst’s message. Additionally, there shouldn’t be

any gain from tampering for a “tampered-outcome” type; that is, types that others would

like to mimic always report truthfully. This is Proposition 1-ii(b).

3.2 Optimal and Robust Experimentation

The fact that all messages are on-path does not rule out multiple equilibria of the communi-

cation subgame as the principal may randomize after a conclusive or inconclusive audit. For

instance, if the designer selects {q
S
, q} with q > q

H
, q

S
> 0, then the principal could choose

di↵erent (mixed) decisions as a function of the analyst’s report after a conclusive audit yields

s = q
S
, or as a function of the audit after the analyst reports m = q

S
. Thus, the designer’s

payo↵ from experiment {q
S
, q} varies with the equilibrium in the communication subgame.

To characterize the designer’s equilibrium choice, we introduce the set of robust ex-

periments ⇧i, i 2 {L, S}. These are binary experiments of the form {q
i
, q} such that the

principal when indi↵erent–e.g., after message m = q
i
or after a conclusive audit determines

s = q
i
–selects the most favorable action to the analyst.

Definition (Robust Experiments) Define the class i 2 {L, S} of robust experiments ⇧i

indexed by ⌧ 2 [0, 1], as

⇧i =

⇢
⇡ = {q

i
, q} : q � q

H
and F̄ (ci(⌧)) = p

C

i

✓
q � q

i

q � µ

◆
, ⌧ 2 [0, 1]

�
(3)

with ci(⌧) given by

cS(⌧) = ⌧ (1� �)�S and cL(⌧) = cS(⌧) + (1� �) (�L ��S) , ⌧ > 0, (4)

and ci(⌧) = 0 if ⌧ = 0, alongside the equilibrium behavior

dU

⇣
q
i

⌘
= dI

⇣
m, q

i

⌘
= di; dI (m, q) = dH ; dU (q) = ⌧dH + (1� ⌧)dS.

Finally, let ⇧ ⌘ ⇧L [ ⇧S denote the set of robust experiments.

We will refer to ⇧S as “status-quo” (robust) experiments and to ⇧L as “up-or-down”

(robust) experiments. In equilibrium, an inconclusive audit leads the principal to posterior

12



q
H
following m = q and she selects dH with probability ⌧ and dS with probability 1�⌧ . This

also determines the incentives to tamper after an unfavorable outcome—which given scale-up

probability ⌧ translate to thresholds (4)—and the probability F̄ (ci(⌧)) that following s = q
i

the analyst reports truthfully�see (3). This also implies that the set ⇧i depends on the

auditing intensity �; for instance, if � = 1 then the commitment experiment is the only robust

experiment–i.e, ⇧i = {q
i
, q

H
}. Moreover, experiments in ⇧i can be equivalently indexed by

either (i) the posterior q, (ii) the probability of outcome s = q
i
, with Pr

h
s = q

i

i
= q�µ

q�q
i

, (iii)

the scale-up probability ⌧ , or (iv) the induced tampering threshold ci. Finally, all experiments

in ⇧i are ordered according to their informativeness: trivially, an experiment with a higher

q (equivalently higher ci, higher ⌧, or higher Pr[s = q
i
]) corresponds to a Blackwell-more

informative experiment. In what follows, we refer to the class of “up-or-down” experiments

⇧L as the “more informative” class.19

We now present our main equilibrium characterization. For i 2 {L, S}, let vi(⌧, µ;�, k)

be the designer’s equilibrium payo↵ in a communication subgame after he selects ⇡i (⌧) 2 ⇧i,

with k 2 {S, I} the principal’s task allocation and � her auditing intensity, and let

Vi (µ;�, k) ⌘ max
⌧2[0,1]

vi(⌧, µ;�, k), (5)

V̄ (µ;�, k) ⌘ max {VS (µ;�, k) , VL (µ;�, k)} , (6)

with Vi (µ;�, k) the designer’s maximum expected payo↵ when restricted to ⇧i, and V̄ (µ;�, k)

his maximum expected payo↵ when choosing a robust experiment.

Proposition 2. Let � > 0 and µ 2 (q
S
, q

H
). Then,

(i) there is always an equilibrium of the design subgame in which the designer selects a robust

experiment,

(ii) if the designer obtains payo↵ V
⇤ in some equilibrium of the design subgame, then (a)

V
⇤ = V̄ (µ;�, k) when the principal organizes to innovate, and (b) V ⇤ � V̄ (µ;�, k) when the

principal organizes for scale. If V ⇤
> V̄ (µ;�, k) and ⇡

⇤ is an equilibrium experiment, then

q
S
2 S(⇡⇤).

Proposition 2 justifies our restriction to robust equilibria when analyzing the principal’s

organizational design problem. This is based on two observations. First, there is always

19This terminology captures the fact that for each experiment in ⇧S there is always an experiment in ⇧L

that is Blackwell-more informative.
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an equilibrium in which the designer responds by selecting an experiment in ⇧ following

the principal’s organizational choice. We prove this claim in the appendix by constructing

from an arbitrary ⇡
0 = {q,Pr [q]}

q2S(⇡0)–and considering communication equilibria in which

the principal selects the designer’s most favorable action after a conclusive audit–a robust

experiment that gives the designer a (weakly) higher payo↵. Our construction involves two

steps: we first show that there is an equilibrium of an experiment supported on
n
q
L
, q

S
, q

o
,

q � q
H
, that (weakly) improves the designer’s payo↵ obtained from ⇡

0. We then show

that the designer’s payo↵ is quasiconvex when restricted to the (convex) set of experiments

supported on
n
q
L
, q

S
, q

o
. This ensures that the maximum payo↵ is achieved at one of the

extreme points–i.e., at either {q
L
, q} 2 ⇧L or {q

S
, q} 2 ⇧S.

Second, Proposition 2-ii shows that the designer can always guarantee himself V̄ (µ;�, k)

in any equilibrium. Indeed, experiment {q
S
+", q}, with " small, results in a unique designer’s

payo↵ as the principal never randomizes after a conclusive audit. This uniqueness of equi-

librium payo↵ guarantees that V ⇤ � V̄ (µ;�, k) in any equilibrium. In fact, when organizing

to innovate, all equilibria of the design subgame give him the same expected payo↵; thus, to

find the designer’s optimal payo↵ we can restrict attention to robust experiments. This is

not the case when organizing for scale: if q
S
2 S(⇡), the principal could use her indi↵erence

after a conclusive audit shows s = q
S
to minimize tampering by announcing that she would

treat favorably truth-telling and unfavorably tampering. In fact, whenever � � �S/�L the

designer can obtain the commitment payo↵ from experiment {q
S
, q

H
}–this is the case if the

principal threatens to implement decision dL if the analyst is caught tampering. This proves

that V
⇤
> V̄ (µ;�, k) in this case. We di↵er to Section 6.2 a discussion of organizational

design with non-robust experiments.

3.3 Designer’s Equilibrium Payo↵s

To solve for the designer’s optimal experiment using Proposition 2, we now characterize

vi(⌧ (c) , µ;�, k)–the designer’s payo↵ as a function of the induced tampering threshold. To

this end, define ⌘(c) as the product of the expected tampering cost conditional on tampering

times the odds of tampering,

⌘(c) ⌘ E [c|c  c]
F (c)

F (c)
=

R
c

0 cdF (c)

F (c)
. (7)
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Lemma 1. For µ 2
h
q
i
, q

H

i
, consider {q

i
, q} 2 ⇧i that induces threshold c. Then,

vi(⌧ (c) , µ;�, k) = vH � (1� �)�i + c�mi(c;�, k)(q
H
� µ), (8)

with mi the slope of the designer’s payo↵ with respect to the prior µ:

mi(c;�, k) ⌘ �i

q
H
� q

i

✓
�

F (c)
+

c

�i

+ I{k=I}
⌘(c)

�i

◆
. (9)

To understand (8-9), for each robust experiment {q
i
, q} 2 ⇧i we introduce an equivalent

“full commitment” game with a “modified” designer’s utility so that the designer’s payo↵

from {q
i
, q

H
} gives him the same expected payo↵–see Figure 2.20 This allows us to appeal to

the geometric intuition of the full commitment case when studying the designer’s preferences

in the imperfect commitment case. Fix ⇡(c) 2 ⇧i which induces threshold c, and define the

task allocation-dependent utility ṽi,k for di,

ṽH,k ⌘ vH � (1� �) (1� ⌧ (c))�S, (10)

ṽi,k ⌘ vi � ��i

F (c)

F̄ (c)
� I{k=I}⌘(c), i 6= H. (11)

Figure 2 describes the relation between v(q) in the original game and the indirect utility

ṽk(q) in the equivalent “full commitment” game.

To show payo↵-equivalence, start with the designer’s payo↵ under full commitment from

{q
i
, q

H
},
�
1� p

C

i

�
vH + p

C

i
vi, with p

C

i
given by (1). Equilibrium tampering alters this pay-

o↵ in two ways. First, upon observing q
H
, the principal now keeps the status quo with

probability (1� �) (1� ⌧ (c))�this explains (10). Second, tampering and auditing change

the distribution of outcomes so that the probability of observing q
i
increases from p

C

i
to

p
C

i
/F̄ (c)—see (3). This higher probability of a low outcome reduces the designer’s payo↵ by

�
⇥�
1� p

C

i

�
vH + p

C

i
vi

⇤
� �

✓
1� p

C

i

F̄ (c)

◆
vH +

p
C

i

F̄ (c)
vi

�
= ��i

F (c)

F̄ (c)
,

which explains (11) for k = S. Finally, tampering costs are incurred if s = q
i
, which occurs

with probability p
C

i
/F̄ (c), and explains (11) for k = I.

20We cannot apply the concavification argument when � < 1 as the probability of a message corresponding

to a “tampered outcome,” as well as the principal’s posterior belief when unaudited, are determined in

equilibrium by the analyst’s global tampering behavior, which in turn depends on the entire distribution of

experimental outcomes.
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Figure 2: Payo↵s for the equivalent “full commitment” game.

Expressions (10-11) capture the trade-o↵ that the designer faces: a higher scale-up prob-

ability ⌧ increases the payo↵ after an unaudited message q (outcome q
H

in the equivalent

“full commitment” game), but a higher scale-up probability can only result from a higher

tampering threshold. This forces the designer to o↵er a more informative experiment to

sustain the higher ⌧, thus increasing the likelihood of observing an unfavorable outcome.

Figure 3 depicts the designer’s payo↵ under separation VS (µ;�,S) and VL (µ;�,S).

V̄ (µ;�,S) is then computed as the upper envelope of these payo↵s. These graphs high-

light two features that distinguish our model with tampering from a model with analyst’s

commitment. First, in Figure 3-a, {q
S
, q

H
} is the optimal experiment if � = 1, which

remains optimal if � < 1—this is a general result formally shown in Proposition 4-ii(a).

However, the equilibrium expected payo↵ of the designer is now strictly convex in the prior

for µ 2
h
q
S
, q

H

i
. This is a reflection that he actually changes the experiment (switching to

one with a higher ⌧ and hence higher c) as µ increases. In fact, as shown in Figure 3-b, a

higher prior can lead to switches in the optimal class of experiment. Indeed, in spite of an

“up-or-down” experiment being optimal in Figure 3-b when � = 1, if � < 1 then the designer

may actually switch to a “status-quo” experiment–see Section 5.2.
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Figure 3: Designer’s equilibrium payo↵ for di↵erent experiment classes.

4 Motivating Informative Experimentation

Firms have two often-conflicting goals when managing data analytics: to encourage ex-

perimentation by their members and to foster faithful reporting of their findings. In this

section, we focus on the first goal and show how di↵erent organizational levers—in particular,

whether to integrate or separate design and analysis, and how much to audit the analyst’s

report—a↵ect the informativeness of experimentation.

For the remainder, let {q
i
, q

⇤
i
(�, k)} 2 ⇧i be the designer’s optimal experiment under a

k-allocation when restricted to ⇧i, with c̄
⇤
i
(�, k) the induced tampering threshold, and let

i
⇤ (�, k) be the class of the designer’s optimal experiment. We show below that separating

tasks or decreasing auditing intensity always increases within-class experimentation—so that

q
⇤
i
(�, k) increases for fixed i—but this may lead to adverse class switches—e.g., the designer

switching to an experiment in the “less informative” class ⇧S. With these insights, we then

solve the principal’s organizational design problem in Section 5.

17



4.1 Motivating Experimentation through Task Allocation

Assigning the tasks of experimental design and analysis to the same agent forces him to

economize on tampering costs when choosing an experiment; for instance, he may sacrifice

scaling-up probability in order to reduce the incentives to tamper—this will always be the

case when he is restricted to an experiment in ⇧i— or may switch the class of the experiment.

To understand how internalizing tampering costs a↵ects the choice of experiment, we first

study how equilibrium tampering costs vary across experiments in ⇧S and ⇧L.

Consider experiments ⇡L (⌧) 2 ⇧L and ⇡S (⌧) 2 ⇧S that induce the same scale-up prob-

ability after an inconclusive audit. From (11), expected tampering costs are

Ci(⌧) ⌘
p
C

i

F̄ (ci(⌧))

Z
ci(⌧)

0

cdF (c) = p
C

i
⌘(ci(⌧)), (12)

with ⌘ (c) defined by (7). Conditional on an unfavorable outcome—q
L
in the case of ⇡L (⌧)

and q
S
in the case of ⇡S (⌧)—expected tampering costs are higher for ⇡L (⌧) as the analyst

faces a larger gain from tampering; so we must have ⌘ (cL(⌧)) > ⌘(cS(⌧)). Nevertheless, the

probability of an unfavorable outcome is also lower for ⇡L (⌧)�which implies that pC
L
< p

C

S
.

Therefore, expected tampering costs may not increase, and actually decrease, when the

designer moves from experiment ⇡S (⌧) to experiment ⇡L (⌧). However, if

inf
⌧2[0,1]

⌘ (cL(⌧))

⌘ (cS(⌧))
� p

C

S

p
C

L

, (13)

then CL(⌧) � CS(⌧) for all ⌧ 2 [0, 1].21 With these insights, and recalling from (5) that

Vi (µ;�, k) is the designer’s maximum expected payo↵ from an experiment in ⇧i, we now

characterize situations in which integration reduces experimentation.

Proposition 3. (i) We have q
⇤
i
(�,S) � q

⇤
i
(�, I).

(ii) Let mi be the slope of the designer’s payo↵ defined in (9). If (ii-a) mS(cS (⌧) ;�, I) �

mL(cL (⌧) ;�, I) is single-crossing in ⌧ 2 [0, 1] (from negative to positive), and (ii-b) condi-

tion (13) holds; then VS (µ;�, I) > VL (µ;�, I) whenever VS (µ;�,S) > VL (µ;�,S).
21Lemma 5 in the Appendix provides su�cient conditions for (13) to hold. For instance, (13) follows if

⌘ (c) increases su�ciently rapidly (e.g., if ⌘ (c) is convex and p
C

L
> (�S/�L) pCS ; or if ⌘ (c) is log-convex

in [c, (1� �)�L]) or if the relative gain �L � �S is su�ciently large (e.g., if ⌘ (c) is log-concave and

p
C

L
⌘ ((1� �)�L) � p

C

S
⌘ ((1� �)�S).
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How would a concern with reducing tampering costs a↵ect experimentation? First, if

restricted to experiments in ⇧i, reducing tampering costs can only be achieved through a

reduction in scale-up probability,22 implying that integration (weakly) reduces within-class

experimentation–this is Proposition 3-i. Then, if task allocation doesn’t change the class of

the designer’s optimal experiment, integration unambiguously reduces the informativeness of

experimentation. Put di↵erently, integration can lead to more informative experimentation

only if it leads to a change in the optimal experiment class.

Second, (13) guarantees that the designer can reduce expected tampering costs while

preserving scale-up probability by switching to a status-quo experiment. One would then

conjecture that if the designer selects an status-quo experiment under task separation, he will

certainly do so if tasks are instead integrated. However, if tasks are integrated the designer

will seek to reduce scale-up probability, and for lower scale-up probabilities an “up-or-down”

experiment may actually be preferable. Proposition 3-ii then provides a su�cient condition

to rule out this case and preserve the designer’s preferences for the “less informative” class

⇧S when tasks are integrated.23

4.2 Motivating Experimentation through lax auditing

The standard rationale for auditing data analytics processes is both to ensure data integrity

and to dissuade tampering. This remains true in our model: for a fixed experiment, increas-

ing � allows the principal to both shield herself after a conclusive audit from any misrepre-

sentation of the data, and to reduce the incentives to tamper by making an inconclusive audit

less likely. In fact, for a fixed experiment, increasing � can only increase the information

that reaches the principal.

However, once experimental design is delegated, varying � also changes the designer’s

incentives to experiment. Indeed, reducing � both: (i) changes the set of robust experiments,

22Decreasing scale-up probability lowers both the equilibrium tampering threshold and the likelihood that

a tampering outcome occurs, leading to lower expected tampering costs.
23We actually prove the contrapositive in the proof of Proposition 3-ii: if VL (µ;�, I) � VS (µ;�, I) then

VL (µ;�,S) � VS (µ;�,S). The single crossing condition on the slope guarantees that VL (µ;�, I)�VS (µ;�, I)

is single-crossing, and that moving to separating tasks increases both the scale-up probability and the

di↵erence CL(⌧)� CS(⌧), both changes favoring “up-or-down” experiments.
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allowing for more informative experiments; and (ii) (weakly) reduces the principal’s scale-up

probability for each experiment. To understand the overall e↵ect on experimentation, the

following proposition decomposes the designer’s problem into two subproblems. First, we

analyze how auditing changes within-class experimentation. Second, we study the optimal

class i⇤(�, k). This decomposition uncovers the two countervailing e↵ects that auditing has

on equilibrium experimentation: moving away from a perfect audit leads the designer to seek

stronger evidence supporting decision dH but (possibly) weaker evidence favoring dL.

Proposition 4. (i) Fix µ 2 [q
i
, q

H
], i 2 {L, S} and k 2 {S, I}. Then,

(i-a) vi(⌧ (c) , µ;�, k) is supermodular in (c,��).

(i-b) Outcome q
⇤
i
(�, k) is non-increasing in �.

(ii) Suppose that p
C

L
� (�S/�L) pCS –so that the designer selects a status-quo experiment

under a perfect audit. Then, for � > 0 :

(ii-a) If tasks are separated, then VS (µ;�,S) � VL (µ;�,S).

(ii-b) If tasks are integrated and (13) holds, then VS (µ;�, I) � VL (µ;�, I).

Proposition 4-i shows that, when restricted to ⇧i, increasing � : (a) reduces the designer’s

incremental payo↵ from an experiment with a higher tampering threshold; and (b) leads the

designer to select less informative experiments. To see this, consider the marginal change in

the designer’s payo↵ (8) when, as a result of intensifying auditing, scale-up probability in-

creases to preserve the same tampering threshold c. The designer’s marginal expected payo↵

conditional on an inconclusive audit decreases by v(q
i
), but increases after a conclusive audit

by �i Pr [s = q]+ v(q
i
). Overall, the designer’s marginal payo↵ is proportional to the proba-

bility that ⇡ generates a favorable outcome, which decreases with c. Therefore, increasing �

reduces the designer’s marginal payo↵ from more informative experiments. A more intense

auditing also changes the set of robust experiments, however. Proposition 4-i(b) then shows

that the combined e↵ect of increasing �—i.e., lower incentives to experiment but more infor-

mative experiments available in ⇧i�unambiguously discourages experimentation. It follows

that whenever the class of the designer’s experiments is the same for two di↵erent auditing

intensities, the lower auditing intensity induces a Blackwell-more informative experiment.

Proposition 4-ii shows that the designer’s preference for the less informative class are
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preserved when moving from a perfect audit to a lax audit.24 An important implication is

that task separation is ine↵ective as a tool to induce more information about the “downscale”

decision dL if the designer is not willing to provide this information under a perfect audit.

4.2.1 Designer’s responsiveness to Auditing

We end this Section by asking: when can lax auditing increase experimentation? To this

end, we introduce the notion of designer’s responsiveness to auditing.

Definition (Responsiveness) The designer under a k�allocation is responsive to ��auditing

in class i 2 {L, S} if he strictly prefers experiment {q
i
, q} to {q

i
, q

H
} for some q > q

H
. With

⇤i(k) the set of auditing intensities satisfying this condition, we say that the designer is re-

sponsive to auditing i↵ ⇤i(k) 6= ; for some i 2 {L, S}.

The following Lemma will be used in Section 5. The proof of the lemma also provides a

sharp characterization of the sets ⇤i(k), i = {L, S}.

Lemma 2. If f(0) > 0, then, regardless of the task allocation, the designer is responsive to

auditing in ⇧S.

Two conditions ensure that the designer is responsive to auditing: (i) there must be

experiments in ⇧i for which the principal is willing to scale-up with positive probability, and

(ii) the designer must gain when switching to one of these experiments. As the likelihood of

high tampering costs can help the analyst commit not to tamper, the assumption f(0) > 0

ensures that the the principal will never scale-up after an inconclusive audit if the designer

were to select experiment {q
i
, q

H
}. Moreover, in the class ⇧S, the marginal payo↵ from an

experiment with positive scaling-up probability can be made arbitrarily large by lowering

auditing intensities. It follows that the designer is always responsive to auditing when

restricted to “status-quo” experiments if f(0) > 0.25

24This is always the case if tasks are separated. If tasks are integrated, however, we must now consider

how equilibrium expected tampering costs vary across classes. Nevertheless, condition (13) guarantees

that expected tampering costs decrease when moving to a status-quo experiment with the same scale-up

probability. Combined with Proposition 4-ii(a), we then have that preferences for a less informative class

are also preserved under integration if expected tampering costs are also lower.
25On the other hand, for low � no “up-or-down” experiment may have a positive probability of scaling-up

as the analyst will always tamper if tampering costs fall below cL(0). Then, the proof of the lemma provides
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5 Organizational Design

We now turn to the issue of organizational design. To understand the trade-o↵s that the

principal faces, consider her expected utility from experiment ⇡ = {q
i
, q} 2 ⇧i:

U (�, k; ⇡) = q
H
+ Pr [s = q]�(q � q

H
) +

+Pr[s = q
i
][1� (1� �) Pr[m = q|s = q

i
]](Eq

i

[u(di, ✓)]� q
H
) (14)

The principal benefits from ⇡ in two ways. First, she selects dH after auditing a scale-up

recommendation so that the more convincing the evidence in favor of dH—the larger q� q
H

is—the greater her gain. Second, when ⇡ 2 ⇧L, she selects dL after s = q
L
except when

the analyst tampers and her audit is inconclusive. Therefore, the gain from scaling-down

can be increased by discouraging tampering. Thus, she needs to strike a balance between

inducing the designer to experiment more while restraining at the same time the analyst

from tampering.

How do task allocation and auditing intensity help her resolve this trade-o↵? Using (14),

we can write the principal’s equilibrium expected utility before the design subgame:26

U (�, k) = q
H
+
⇣
q
H
� µ

⌘ 
�
F (c̄⇤)

F̄ (c̄⇤)
+ I{i⇤=L}

✓
1 + �

F (c̄⇤)

F̄ (c̄⇤)

◆ 
↵L � q

H

q
H
� q

L

!!
. (15)

This expression showcases our main insight: fostering experimentation while discouraging

tampering are conflicting goals. The principal can always eliminate frictions in communica-

tion by perfectly auditing the experiment—for a fixed experiment and costless auditing, she

will certainly do so—but this will reduce the information she receives regarding decision dH .

In fact, an imperfect audit allows her to credibly withhold scaling-up if the evidence in favor

of dH are not convincing, forcing the designer to provide more compelling evidence. Thus,

she would like to incentivize tampering by having a “shadow of a doubt” on the claims of

the analyst, but such skepticism can only be credible if � < 1.

Expression (15) clarifies that, given equilibrium behavior, the principal is always willing

to trade-o↵ more distortions in communication for more informative experimentation. The

the set of auditing intensities that ensures that there are “up-or-down” experiments with ⌧ > 0.
26Recall that for a k�allocation and ��auditing, i

⇤ = i
⇤ (�, k) is the class of the designer’s optimal

experiment, and c̄
⇤ = c̄

⇤
i⇤(�, k) the analyst’s tampering threshold.
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reason is twofold. First, she strictly benefits from selecting dH only if the audit is conclusive,

thus making any distortion in communication irrelevant. Second, an experiment with a

higher tampering threshold c̄
⇤ lowers her expected utility conditional on s = q

L
, but also

makes this outcome more likely; the combined e↵ect on her expected utility is proportional

to
�
1 + �F (c̄⇤) /F̄ (c̄⇤)

�
which increases in c̄

⇤.

We now study the optimal organizational structure by analyzing separately the case that

the principal organizes to innovate and when she organizes for scale. We end this section by

considering two additional organizational levers: the principal can specify the distribution

of the analyst’s tampering costs as well as restrict her choice set.

5.1 Organizing to Innovate

Suppose that the firm “organizes to innovate,” so that the principal decides whether to

“approve” dH or retain the status-quo dS. The absence of a scale-down option dL means

that there are no concerns regarding adverse class switches and robust experiments are

always optimal—see Proposition 2. Then, task separation always increases within-class

experimentation—see Proposition 3—and this explains the principal’s preference for sepa-

rating design and analysis. From (15), she gains from experimentation only if lax auditing

compels the designer to select an experiment that will be tampered with positive probability.

This indirect benefit of lax auditing leads the principal to lower the auditing intensity below

the one she would set if she controlled experimental design. We thus reach one of our main

results: if auditing is costless and the designer is responsive to auditing–see Lemma 2–then

in every equilibrium the principal commits to an imperfect audit, i.e. �⇤
< 1.

Proposition 5. (i) Consider a subgame with � 2 (0, 1). Then, the principal prefers to

separate tasks.

(ii) Suppose that the principal can select � at no cost, and let �⇤ denote her equilibrium choice.

Then, �⇤
< 1 in every equilibrium if and only if the designer is responsive to auditing. In

particular, if f(0) > 0, then �
⇤
< 1.
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5.1.1 Tampering Incentives and Optimal Auditing

How much should the principal audit the analyst’s report given that she separates tasks?

To derive her optimal audit �⇤, we first characterize the designer’s equilibrium experiment

for any � 2 (0, 1). To this end, define L(c) ⌘ f(c)/
�
F̄ (c)

�2
and c̄FR implicitly by F̄ (c̄FR) =

p
C

S
/ (1� µ) , so that c̄FR is the threshold induced by a fully informative experiment.27

Lemma 3. Fix � 2 (0, 1) and suppose that L(c)� (�S/�) is single-crossing in [0,�S], from

negative to positive, with �S ⌘
�
1� p

C

S

�
/
�
p
C

S
�S

�
. Then, the designer under separation

selects the commitment experiment, corresponding to c̄
⇤ = 0, if L(0) � �S/�. Otherwise, he

selects an experiment that induces tampering threshold

c̄
⇤ = min

⇥
L
�1(�S/�), (1� �)�S, c̄FR

⇤
. (16)

Consistent with Proposition 4-i.b, the designer’s optimal experiment induces less tamper-

ing, but is less informative, as auditing intensifies–the equilibrium tampering threshold (16)

decreases with �. The single-crossing condition on L(c) guarantees that the designer’s ex-

pected utility is quasiconcave in the tampering threshold and is always satisfied, for instance,

if the hazard rate f(c)/F̄ (c) is increasing. The equilibrium threshold c̄
⇤ is the minimum of

three possible choices. The term c̄FR = F̄
�1
�
p
C

S
/ (1� µ)

�
corresponds to a fully informative

experiment, while (1� �)�S corresponds to the case that the principal rubberstamps the

analyst’s recommendation. The first term in (16) reflects the designer’s choice when it leads

to a lower approval probability. In fact, if L(c) is large—in particular, L(0) � �S/�—then

the principal only approves when she audits and the designer’s experiment induces c̄
⇤ = 0.

Therefore, imperfect, albeit intense, auditing—specifically, when � � �S/f(0)—can still

completely crowd-out valuable experimentation. This imposes an upper bound on the range

of auditing intensities that the principal might entertain.

From (15), the principal’s problem when organizing to innovate reduces to

�
⇤ 2 arg max

�2[0,1]
�
F (c̄⇤)

F̄ (c̄⇤)
, with c̄

⇤ given by (16). (17)

The optimal auditing will, in general, be sensitive to the cost distribution and preferences of

agents. To illustrate (17), we study a case where tampering costs are uniformly distributed.

27Recall that when organizing to innovate, q
S
= 0.
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Example: Uniform Distribution. Let �S = 1 with vS = 0, and suppose that c is

uniformly distributed in [0, 1], so that F̄ [(1� �)�S] = �. From (8), the designer’s utility

under task separation when the experiment induces c 2 [0, 1� �] is

vS(⌧ (c) , µ;�, S) = �+ c�mS(c;�, S)
⇣
q
H
� µ

⌘
= �+

�
1� p

C

S

�
c� p

C

S

�

1� c
,

which is concave in c. Denote by ccrit ⌘ 1 �
r

�
p
C

S

1�p
C

S

its unconstrained maximum. Then,

mirroring (16), the designer’s optimal experiment leads to a tampering threshold

c
⇤ = min

(
max {0, ccrit} , 1� �,

µ

1� µ

1� q
H

q
H

)
.

We can now fully characterize the equilibrium experiment as a function of �. Recall that
1�p

C

S

p
C

S

are the approval odds of the innovation if the principal were to set � = 1. If � � 1�p
C

S

p
C

S

,

then ccrit  0 and the designer selects
n
0, q

H

o
, i.e., selects the commitment experiment. If

�  p
C

S

1�p
C

S

, then ccrit � 1�� and the designer selects the most informative robust experiment.

This would lead to either a fully informative experiment, or to an experiment for which the

principal’s rubberstamps the analyst’s recommendation. Finally, if
p
C

S

1�p
C

S

 �  1�p
C

S

p
C

S

, then

c
⇤ = min

h
ccrit,

µ

1�µ

1�q
H

q
H

i
and the designer limits the informativeness of the experiment,

leading to intermediate approval probabilities after an inconclusive audit.

Figure 4 describes two cases, with
1�p

C

S

p
C

S

taking values 2 and 1/2.28 If
1�p

C

S

p
C

S

= 2, then

the innovation idea is a good prospect : it is likely to be perceived after experimentation as

a profitable alternative to the current status quo. Then, the designer reacts to more intense

auditing by switching to experiments that are less informative (consistent with Proposition

4) but that lead to a higher probability of approval. Figure 4-a shows the principal’s utility,

which is maximized for � = 0.57. So, for good-prospect ideas, the principal engages in

somewhat intense auditing and the designer restricts experimentation as, for such intense

auditing, the principal is willing to rubberstamp the analyst’s recommendations.

If
1�p

C

S

p
C

S

= 1/2, then the innovation idea is a poor prospect : it is unlikely that experimen-

tation will uncover evidence showing it to be more profitable than the status quo. Again,

the designer reacts to more intense auditing by experimenting less but approval probabil-

ity is now non-monotonic: it increases for low values of ��as the designer always selects

28In both cases, we take µ = 1/4. We have q
H

= 3/8 if 1�p
C
S

p
C
S

= 2, while q
H

= 3/4 if 1�p
C
S

p
C
S

= 1/2,
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Figure 4: Equilibrium experimentation as a function of auditing for (a) a good prospect, and

(b) a bad prospects.

a fully informative experiment and increased auditing simply raises approval probability—

but it monotonically decreases when the designer actually switches to a less informative

experiment. In fact, for � > 1/2, the designer selects the commitment experiment so that

experimentation creates no value for the principal. Figure 4-b describes the principal’s util-

ity which is maximized for � = 0.39. So, for poor-prospect ideas, the principal seldom

audits the experiment and the designer in response does not reduce experimentation—i.e.,

the designer’s experiment fully reveals the state. Nevertheless, such lax auditing implies that

approval largely relies on the principal vetting the analyst’s recommendation.

5.2 Organizing for Scale

Suppose now that the firm “organizes for scale.” From (15), it remains true that she would

separate tasks and commit to an imperfect audit in an e↵ort to incentivize experimentation.

When organizing for scale, however, she must guard against adverse class switches—namely,

a designer’s switch from an “up-or-down” experiment to a “status-quo” experiment—in
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response to an imperfect audit. This terminology is motivated by the following observation:

under task separation, a switch to the designer’s optimal “status-quo” experiment makes the

principal (weakly) worse o↵.

Lemma 4. Let �i ⌘
�
1� p

C

i

�
/
�
p
C

i
�i

�
, i = L, S, and suppose that L(c) � (�i/�) is single-

crossing in [0,�i], and a perfect audit leads the designer to select an “up-or-down” exper-

iment. Then, if tasks are separated, for any � < 1 the principal is weakly better o↵ if the

designer is constrained to “up-or-down” experiments.

The concern with adverse class switches underlies the main di↵erences between organizing

to innovate and organizing for scale. First, to ensure that the designer selects an “up-or-

down” experiment, she may now prefer to integrate tasks. Second, she may prefer to perfectly

audit, even if the designer is responsive to auditing, if lax auditing triggers an adverse class

switch.

Proposition 6. (i) Suppose that for � < 1, the conditions of Lemma 4 and Proposition 3-ii

hold. Then, the principal separates tasks.

(ii) Let

W (�, c̄) ⌘
R
c̄

0 cdF (c)

��+ c̄F [c̄]
, (18)

and suppose that W (�S, (1� �)�S) > W (�L, (1� �)�L). Then, there exist q
S
and µ with

q
S
< µ < q

H
such that the principal integrates tasks.

(iii) Suppose that either (iii-a) pC
L
> (�S/�L) pCS and f(0) > 0, or (iii-b) pC

L
< (�S/�L) pCS ,

the designer is responsive to auditing and i
⇤ (k,�) = L. Then �

⇤
< 1 in every equilibrium of

the organizational design game.

As long as an adverse class switch does not occur, task separation remains optimal if the

designer’s preference for the less informative class are preserved when integrating tasks—this

is Proposition 6-i. Integration can be optimal if the principal’s auditing leads the designer

under separation to select a status-quo experiment while he would instead select an “up-

or-down” experiment under integration. Proposition 6-ii provides a su�cient condition for

such case. Finally, Proposition 6-iii provides su�cient conditions for optimal auditing to

be imperfect. First, if pC
L

> (�S/�L) pCL then the designer already selects an status-quo

experiment under a perfect audit, eliminating any concern that an imperfect audit might
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trigger a switch; then, a similar argument as in Proposition 5-ii guarantees that �
⇤
< 1.

If p
C

L
< (�S/�L) pCL , however, the designer selects experiment {q

L
, q

H
} when the audit

is perfect and lowering auditing intensity might induce an adverse switch. In this case,

�
⇤
< 1 obtains as long as there is an auditing intensity that avoids a switch to a status-quo

experiment.

5.2.1 Discretion, Auditing, and Experimentation.

The only reason for setting � = 1 is that any imperfect audit that motivates valuable

experimentation also leads to an adverse class switch. The same is true of integration:

the principal integrates tasks only if separation would otherwise lead to the selection of

a status-quo experiment. Nevertheless, the principal can always avoid adverse switches if

she can commit ex-ante to ruling out the status-quo, thus committing to selecting from

extreme options. Then, imperfect auditing and task separation can boost experimentation

and become optimal.

Corollary 1. Suppose that f(0) > 0. If the principal can ex-ante commit to ruling out

decisions, then in any equilibrium we have �
⇤
< 1 and the principal prefers to separate tasks.

This result resonates with insights from the delegation literature in which the principal

rules out intermediate decisions to improve the informational content of delegated decision

making (see, e.g., Szalay (2005) and Alonso and Matouschek (2008)). For example, Szalay

(2005) shows that, to boost incentives to acquire information, a principal may rule out

the (agent’s) optimal decision if uninformed. In our case, agents interested in promoting a

specific option (i.e., scaling up) are more willing to compromise on the status quo than the

principal. Then, limiting discretion boosts experimentation by eliminating such compromise.

Note also that restricting the principal’s choice is accompanied by less intense monitoring:

i.e., she sets �⇤
< 1 if she is able to rule-out decisions. Thus, in this context, discretion and

monitoring act as complements.
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5.3 Organizational Design—Optimal Distribution of Tampering

Costs.

So far, we have considered organizations that adjust their structure in response to the tam-

pering costs of their agents. In some instances, however, these costs can result from or-

ganizational practices: the principal can establish both the cost to the agent from each

tampering action–say, through by-laws exacting punishments upon detection of tampering–

and its likelihood–for example, through improved data security systems, audit trails, and

database access controls.

Suppose that the distribution of tampering costs can be fully specified by the principal.

Consistent with our theme of “credible skepticism” to motivate experimentation, she will

incentivize some tampering in equilibrium by making low tampering costs su�ciently likely.

Proposition 7. Suppose that either the principal organizes for innovation, or she organizes

for scale and p
C

L
< (�S/�L) pCS . If she can specify the task allocation, auditing intensity,

and the distribution of tampering costs, then:

(i) She sets a prior-independent auditing intensity

�
⇤
opt

=
1

2� q
H

. (19)

(ii) The designer selects a fully informative experiment ⇡ = {0, 1}.

(iii) There is a multiplicity of optimal cost distributions but, among them, the following

minimizes expected tampering costs,

F
⇤
opt
(c) =

8
<

:

µ(1�q
H
)

q
H
(1�µ) for c 2 [0,

1�q
H

2�q
H

),

1 for c � 1�q
H

2�q
H

.

(20)

For this cost distribution, the principal is indi↵erent between separating or integrating tasks.

(iv) The principal can implement (20) through a dual internal-external audit: Tampering

is always costless, but an internal audit privately verifies the agent’s report with probability
q
H
�µ

q
H
(1�µ) and rectifies a tampered report.

An important principle in organizing data analytics is that, under delegated experimen-

tation, the organization must also allow, to some extent, tampering by agents. To do so

optimally, the organization both raises the likelihood of low tampering costs and engages in
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Figure 5: Optimal auditing and tampering cost distribution.

lax auditing: the optimal auditing intensity (19) is always lower than 1, but higher than 1/2,

and increases with the principal’s approval threshold.

We prove this proposition by first solving an auxiliary problem: to find the maximum

auditing intensity that induces the selection of experiment ⇡ = {0, q} for some cost distribu-

tion. The solution is e�S(q) = q/(2q�q
H
)–depicted in Figure 5–which is obtained by ensuring

that switching to the commitment experiment {0, q
H
} is never profitable for the designer.

As shown in the proof of the proposition, there are many di↵erent distributions that would

lead him to select {0, q} when auditing intensity is e�S(q). In all of them, tampering for low

realizations must be su�ciently likely so that the principal can commit to high approval rates

only if experiments are su�ciently informative. Formally, experiment {0, q} is the designer’s

incentive compatible choice if the distribution F (c) exceeds some lower bound–see Figure

5-b where the minimum values of F (c) for two experiments are represented by dashed lines.

Optimizing over q gives (19) and we obtain q
⇤ = 1–this is Proposition 7-ii. To wit,

under an optimal organization, the designer has no incentive to garble an experiment that

reveals the underlying state and the principal rubberstamps any scale-up recommendation

after an inconclusive audit. If the organization wants to minimize the costs imposed upon

agents—say because of concerns with increasing hiring costs—then the optimal distribution
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makes tampering either costless or completely deters tampering, with Pr [c = 0] =
µ(1�q

H
)

q
H
(1�µ) –

see Figure 5. This distribution also makes task allocation irrelevant, as expected tampering

costs are always zero.

The optimal organization that satisfies (20) can be a↵orded an intuitive implementation:

the analyst faces no cost of tampering but his report is subjected to a decoupled internal-

external audit. First, the report is internally audited, albeit the probability of a elucidating

the true outcome is restricted to
q
H
�µ

q
H
(1�µ) . If the internal audit is conclusive, however, it

ensures that the report is consistent with the experimental outcome. Second, this report is

subjected to an imperfect external audit, which is conclusive with probability 1/(2 � q
H
).

In summary, the organization conducts more intense internal audits for bad prospects—i.e.,

when scaling-up is less likely under a perfect audit—but commits to a prior-independent

external audit.

Importantly, the outcome of the internal audit must be unknown to the principal. This

decoupling of audits is essential to incentivize experimentation: if the outcome of the inter-

nal audit were known to the principal, the designer in anticipation would then select the

commitment experiment
n
0, q

H

o
. The accounting literature is also concerned with the pos-

sible e↵ects of internal control audits and, in particular, whether the public disclosure of

internal control audits should be mandatory. For example, Lennox and Wu (forthcoming)

study the e↵ects of regulation mandating the disclosure of internal control audits in China.

They present evidence that mandatory disclosure of internal control audits can significantly

reduce the quality of information.

If pC
L
� (�S/�L) pCS , so that the designer selects a status-quo experiment when � = 1,

then to optimally induce an “up-or-down” experiment the principal integrates tasks and

the optimal cost distribution must make tampering strictly costly. The reason is given by

Proposition 4-ii(a): regardless of the cost distribution and auditing intensity, if tasks are

separated, the designer always selects a status-quo experiment if he prefers the status-quo

experiment when � = 1. The principal must then incentivize a class switch by integrating

tasks and equilibrium tampering must be strictly costly. Nevertheless, and consistent with

Corollary 1, if she can commit to ruling out decisions–so that she can induce an “up-or-down

experiments” by ruling out decision dS– then the optimal organization would always lead to
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full experimentation and rely on an internal-external dual audit.

Corollary 2. Suppose that the principal can ex-ante commit to ruling out decisions. Then,

the optimal organization satisfies (19) and (20) in Proposition 7.

6 Extensions

We now consider two extensions to our main analysis: tampering costs are incurred only

if the analyst is caught tampering, and we allow for equilibria involving non-robust experi-

mentation.

6.1 Tampering costs incurred only if audit is conclusive.

A conclusive audit reveals both the true experimental outcome and whether tampering took

place. Suppose then that tampering costs are only borne if the analyst is found to have

tampered. We can adjust our analysis by positing that setting the expected tampering cost

to �c when the cost realization is c. A full analysis of this case can be found in the online

Appendix B.

For a fixed � < 1, Proposition 1 still applies, albeit with di↵erent threshold values c̄(q)–

this is also true of robust experiments in Proposition 2. To see how this a↵ects the designer’s

payo↵, consider {q
i
, q} 2 ⇧i that induces tampering threshold c. Then, expressions (3-4)

translate to

F̄ (c) p = p
C

i
with p =

q � µ

q � q
i

,

c =
1� �

�
(�i � (1� ⌧)�S)) .

The first condition is identical to (4): the tampering threshold determines the probability

of truthful reporting given an unfavorable outcome–i.e., F̄ (c)– so that the probability of

observing message m = q
i
must be equal to p

C

i
, irrespective of whether expected tampering

costs are c or �c. However, the second condition shows that the corresponding scale-up

probability must be lower to account for the lower tampering cost.

Nevertheless, the comparative statics of experimentation with respect to the two orga-

nizational levers remain the same: separating tasks or decreasing auditing intensity always
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increases within-class experimentation but may lead to an adverse class switch.29 What are

the organizational implications if the analyst’s tampering cost reduces to �c? Restricting

attention to Sections 5.1 and 5.3, it is still true that, when organizing to innovate, the prin-

cipal prefers to separate tasks and to commit to an imperfect audit whenever the designer

is responsive to auditing–however, the conditions for designer responsiveness are now more

stringent. Moreover, if the principal can freely shape the distribution of tampering costs and

can commit to ruling out decisions, then the same organizational design as in Proposition 7

remains optimal-see online Appendix B.

6.2 Organizing for scale with non-robust experimentation.

Our organizational-design analysis has focused on equilibria in which the principal resolves

any indi↵erence after a conclusive audit by selecting the agents’ preferred decision. While

this analysis is without loss when the principal organizes to innovate, these equilibria provide

only a lower bound on the designer’s equilibrium payo↵ when organizing for scale–see Propo-

sition 2. Thus, one wonders if our insights may change if the principal instead conditions

her audited decision on whether the analyst tampered. We show that, while equilibrium au-

diting intensity may vary, our main qualitative results hold when we allow for “non-robust”

equilibria.

Proposition 2-ii shows that if the designer’s equilibrium payo↵ exceeds that of a robust

experiment, then q
S
2 S(⇡⇤), i.e., the designer’s experiment is (possibly a mixture involving)

a experiment {q
S
, q}. The following lemma shows that the designer’s maximum payo↵ from

a experiment {q
S
, q} comes when the principal punishes, to some extent, tampering.

Lemma 5. Suppose that the principal organizes for scale and the designer selects {q
S
, q}, q >

q
H
. Let cS be the tampering threshold for {q

S
, q} 2 ⇧S; i.e., cS satisfies F̄ (cS) = p

C

S

⇣
q�q

S

q�µ

⌘
–

see (3). If ⌧I(q) denotes the probability that the principal selects dS after the analyst is

found tampering, then at the equilibrium which maximizes the designer’s payo↵ we have

29The only notable di↵erence is that the designer’s payo↵ is no longer supermodular in (minus) the

tampering threshold and the auditing intensity. Moreover, the fact that tampering is now less costly implies

that the conditions for designer’s responsiveness are more stringent.
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⌧I(q) = ⌧
⇤
I
(q) with

⌧
⇤
I
(q) ⌘ min {⌧I(q) : cS = (1� �)⌧U(q)�S � �(1� ⌧I(q))(�L ��S), ⌧U(q) 2 [0, 1]} .

In particular, if the principal rubberstamps a scale-up recommendation for {q
S
, q} 2 ⇧S, then

⌧
⇤
I
(q) = 1.

If ⌧ ⇤
I
(q) < 1 then the principal punishes tampering by lowering the probability of selecting

dS if the analyst tampered. The designer obtains then a higher payo↵ from {q
S
, q} not

because it reduces the tampering threshold–indeed, the tampering threshold cS is the same

as that of the robust status-quo experiment–but rather because it allows the principal to

scale-up more often after an unaudited scale-up recommendation. In turn, the principal

could use the designer’s preference for equilibria with ⌧I(q) = ⌧
⇤
I
(q) as follows: she punishes

tampering (i.e. sets ⌧I(q) = ⌧
⇤
I
(q)) if the designer’s experiment is su�ciently informative–i.e.,

if the designer selects {q
S
, q}–while she is lenient if the designer selects a less informative

status-quo experiment (i.e., ⌧I(q0) = 1, if q0 < q). While moving to non-robust experiments

may lead the principal to choose a di↵erent auditing intensity, our main qualitative results

of Section 5 nevertheless hold for non-robust experimentation.

Proposition 8. Suppose that we restrict attention to PBE of the design subgame that max-

imize the principal’s expected payo↵. Then: (i) relative to Proposition 6, the principal is

now more likely to set �⇤
< 1 and to separate tasks, and (ii) the auditing intensity and cost

distribution in Proposition 7 remain optimal.

The only reason for the principal to set �
⇤ = 1 when organizing for scale is to avoid

an adverse class switch. However, the principal can induce a (weakly) more informative

non-robust status-quo experiments for the same �, so that the previous class switch may

now be profitable for the principal. This explains Proposition 8-i. Moreover, the principal

can increase the designer’s payo↵ from experiment {q
S
, q} only if she does not rubberstamp

a scale-up recommendation for a robust experiment–i.e., only if ⌧U(q) < 1 for ⌧I(q) = 1.

Nevertheless, the optimal organization in Proposition 7 is based on finding cost distributions

that implement {q
S
, q} with ⌧U(q) = 1, thus the principal cannot increase the designer’s

payo↵ for such experiments by punishing tampering. That is, if the principal could shape

the distribution of tampering costs and select her preferred PBE for each subgame, then the

auditing intensity (19) and cost distribution (20) remain optimal.
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7 Discussion and Concluding Remarks

In this paper, we develop a model of data analytics and argue that organizations that delegate

experimentation to their agents must also create a culture of “credible skepticism” by limiting

decision-makers’ ability to assess the truthfulness of the information they receive. We now

discuss these findings in the context of several strands of the literature, after which we

conclude.

7.1 Related Literature

Literature on decision-making processes in organizations:

Our analysis contributes to the study of decision making processes in organizations and,

in particular, to how organizations optimally react to the incentive conflicts that members

face (see Gibbons, Matouschek, and Roberts (2013) and Bolton and Dewatripont (2013)

for excellent surveys of this literature). For instance, in models of strategic delegation, the

organization would like to assign authority to a party whose preferences may di↵er from

those of the organization as these a↵ects the production and communication of information

(for instance, in Dessein, 2002, delegation to a biased intermediary can improve cheap-talk

communication with experts).30 One recent example is Nayeem (2017), who quantifies the

value of appointing a decision maker that is harder to convince to approve a project–e.g., as

his preference for a “good project” are weaker than those of the organization. That is, there

is value in appointing a “skeptic” for project approval. In our model, however, the principal

cannot credibly delegate the decision to someone else nor commit to biasing decisions in

favor of agents. Skepticism arises not because of di↵ering preferences, but as an attitude to

(rationally) doubt the claims made by others.

Our paper also contributes to the literature that studies how “light monitoring” of agents’

recommendations may avoid crowding-out their e↵orts to experiment (see, e.g., Aghion and

Tirole (1997)). In our case, imperfect auditing allows the principal to refrain from adopting

the agent’s self-serving recommendation, thus, spurring experimentation.

The literature on task allocation has emphasized that task separation can allow for the

30More generally, decision makers may be able to commit to ex-post biasing decisions in favor of experts,

e.g., in a relational setting as in Alonso and Matouschek, 2007.
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provision of higher power incentives in each task (Holmstrom and Milgrom, 1991, Dewa-

tripont, Jewitt, and Tirole, 2000) or improve information acquisition (Dewatripont and Ti-

role, 1999). Moreover, in sequential tasks, task separation may increase the information

generated in the first task to incentivize the second (Lewis and Sappington, 1997, Landier,

Sraer, and Thesmar (2009)), or can be optimal under e↵ort externalities between tasks

(Schmitz, 2013). We also find that task separation allows for stronger incentives to experi-

ment, even though we do not allow for explicit incentives, as separation provides a “coarse”

instrument to lower the costs of experimentation.

Literature on Information acquisition and Communication

We contribute to the literature that studies models of delegated expertise (Demski and

Sappington (1987))–in particular, models in which a decision maker relies on the information

actively gathered and communicated by experts. For instance, Pei (2015), Argenziano,

Severinov, and Squintani (2016), and Deimen and Szalay (2019) consider models where an

agent decides what information to gather if communication with the principal takes the form

of cheap talk, while Che and Kartik (2009) considers certifiable disclosure.31 Argenziano et

al. (2016) and Deimen and Szalay (2019) use the threat of o↵-path “bad” communication

(e.g., a reversion to a “babbling” equilibrium) if the expert acquires less information to

motivate information acquisition. In Pei (2015) communication is “frictionless:” the agent

reveals all the information gathered if acquiring a less informative signal is always feasible

(and less costly) (see also Gentzkow and Kamenica (2016)). In Che and Kartik (2009),

incentives to acquire information come from players having di↵erent priors: an expert has a

stronger incentive to be informed relative to the common prior case as he expects that better

information will lead the principal to, on average, embrace his point of view.32

A main insight in these papers is that frictions in communication can be used to discipline

agents if they underinvest in information acquisition.33 While this insight resonates with our

31Our communication stage is also related to models of communication with lying costs–e.g., Kartik,

Ottaviani, and Squintani (2007) and Kartik (2009). Relative to these models, our communication model is

simpler, as we consider a message independent tampering cost, but we incorporate an information acquisition

stage prior to communication.
32Alonso and Câmara, 2016 also show that di↵erences of opinion generically give rise to incentives to

persuade a principal.
33Frictions in communication can also enhance the amount of information transmitted, see e.g., Blume et
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main finding, our mechanism is markedly di↵erent. In contrast to Pei (2015), Argenziano

et al. (2016), and Che and Kartik (2009), the agent faces no explicit cost in acquiring more

information in our model–this matches our main application where data becomes available

to the organization automatically through its normal operation. In contrast to Deimen and

Szalay (2019), we consider an explicit cost of misrepresentation when the analyst commu-

nicates the results, as well as the principal’s ability to audit the analyst’s message and to

allocate tasks to di↵erent agents.

Literature on relaxing the commitment assumption in models of Bayesian persuasion.

Our paper contributes to the literature that relaxes the sender-commitment assumption

in Kamenica and Gentzkow’s model of Bayesian Persuasion.34 Papers in this recent literature

di↵er on the modeling of imperfect commitment. For instance, Guo and Shmaya (Forthcom-

ing) consider a model of costly miscalabration: the sender decides the statistical properties

of an experiment and can deviate from the “asserted” meaning for each outcome at a cost

related to the di↵erence between the asserted meaning and its true meaning. That is, they

allow for a sender’s private experimental design rather than our public experimental design

subject to private output-tampering. Min (2020) considers the output-tampering case but

tampering only occurs with some exogenous probability and explores the e↵ect of changes in

this probability in Crawford and Sobel (1982) uniform-quadratic case. In these papers, there

is no tampering or misrepresentation in equilibrium.35 Instead, in our paper tampering is a

generic equilibrium phenomenon resulting from the principal’s choice of auditing intensity.

Perez-Richet and Skreta (2021) study test design under costly state falsification: a designer

selects a test and an agent can change its input at a cost. That is, in contrast to our setup

with output-tampering, the agent engages in input-tampering. Fréchette, Lizzeri, and Perego

(2019) analyze experiments in which the level of commitment can vary across treatments,

al (2007)
34See also the literature on strategic sample selection, e.g., Tillio, Ottaviani, and Sørensen (2017), Tillio,

Ottaviani, and Sørensen (2021), Adda, Decker, and Ottaviani (2020), Felgenhauer and Loerke (2017) and

Libgober (Forthcoming).
35Tampering-proof equilibria are the focus of Min (2020), while Guo and Shmaya (Forthcoming) show

that there is always a Sender-optimal equilibrium with a calibrated strategy–i.e., such that receiver cor-

rectly anticipates its meaning. See also Sobel (2020) for an analysis that distinguishes between “lying” and

“deception”.
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albeit the ability to tamper is exogenously given, while it is an equilibrium outcome in our

paper.

Closest to our modeling of limited commitment are Lipnowski, Ravid, and Shishkin

(2018) and Nguyen and Tan (2018). Lipnowski et al. (2018) consider an information de-

sign setup with output-tampering where the tampering probability depends on the actual

message/state and provide an elegant geometric characterization of the sender’s value of

persuasion. While in our setup the tampering probability is also message/state dependent,

it arises endogenously from the agent’s equilibrium incentives to tamper. Furthermore, while

they characterize the optimal level of credibility from the sender’s perspective, our focus lies

on the receiver/principal’s perspective. Nguyen and Tan (2018) also study public experimen-

tation subject to private output-tampering. They consider a setup with a fixed experimental

outcome space and message space and a communication technology where each message car-

ries a cost that depends both on the message and the experimental outcome. They focus on

conditions on this technology for the Sender’s preferred equilibrium to be supported without

tampering (Condition 1 in Nguyen and Tan (2018)). Out setup does not satisfy Condition

1 (as the tampering cost is the same regardless of the message sent) and, thus, we cannot

apply their results.

One overarching theoretical di↵erence with this literature is that we endogenize the

sender’s commitment power by allowing the receiver to select among di↵erent organiza-

tional practices; for instance, how much to audit of the sender’s message. Thus, while the

literature shows that exogenously relaxing the sender’s commitment can be beneficial for the

receiver, we show the extent to which imperfect commitment is an equilibrium outcome of

the receiver’s organizational practices.

7.2 Concluding Remarks

The ICT revolution–by lowering the costs of data acquisition, storage and processing–has

made managers more reliant on the insights derived from analyzing these data rather than the

intuitions and opinions of other members of the organization. It would then seem that many

of the trade-o↵s that drive the optimal organization to process information are no longer

relevant. We argue that unresolved conflict still makes organizational structure meaningful
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as members handling data still decide which data to use and how to analyze it. We show

that this poses a fundamental trade-o↵: dissuading misrepresentation also reduces data

utilization, limiting the insights that agents derive from the data. Optimal organizations are

then based on a culture of “credible skepticism:” managers have limited ability to audit the

data and analytics behind the recommendations issued by agents, which invites tampering

and misrepresentation in equilibrium.

The adoption of new technologies such as blockchain can eliminate tampering by e↵ec-

tively imposing an infinitely high tampering cost (Tapscott and Tapscott, 2017). Never-

theless, under delegated experimentation, this is never optimal for the firm as the optimal

distribution of tampering costs must lead to some tampering in equilibrium. We showed that

this optimal organization can be implemented through a decoupled internal-external audit:

tampering is costless, but an internal (imperfect) audit can limit its e↵ect by rectifying the

tampered outcome with the true outcome. Then, an external audit is triggered with some

probability without knowing whether the internal audit rectified the report. This system

of consecutive audits strikes a perfect balance between experimentation and tampering and

minimizes the tampering costs of agents. Importantly, under an optimal internal-external

audit, the data architect engages in full experimentation.

To focus on the trade-o↵ between experimentation and misrepresentation, we o↵er a

streamlined model. In particular, managers do not have access to alternative sources of

information (i.e., they do not “seek a second opinion”) nor do they induce competition

between agents to persuade them. We see these extensions as promising and leave them for

future work.
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A Appendix

Proof of Proposition 1: Given ⇡ = {q,Pr [q]}
i2S(⇡), with type space S(⇡) consider a PBE

of the communication subgame where the analyst’s reporting strategy is m
⇤(q, c), which

leads to decisions d⇤
I
(m, s) and d

⇤
U
(m). Proposition 1-i follows immediately as the gain from

tampering is the same for all analysts that observe the same experimental outcome: if type

(q, c) finds it profitable to send qz 6= q instead of q, all types with c
0
< c will strictly prefer

to tamper.

For part (ii), consider the set of tampered outcomes MT defined in the proposition.

Suppose that q, q
0 2 MT but the distributions d

⇤
U
(q) and d

⇤
U
(q0) lead to di↵erent expected

payo↵s for the analyst.36 If q
i
/2 S(⇡), i 2 {S,H}, then the principal never mixes after

a conclusive audit and the analyst’s payo↵ in this event is independent of the message

sent. This is also the case if the audited decision d
⇤
I
(m, q

i
) is independent of m whenever

q
i
2 S(⇡), i 2 {S,H}. This implies that the analyst only benefits from tampering in the

event that the audit is inconclusive, but if d⇤
U
(q) and d

⇤
U
(q0) yield a di↵erent payo↵, then

m
⇤(q, c) cannot be part of an equilibrium. Therefore, we must have that d⇤

U
(q) = d

⇤
U
(q0) for

q, q
0 2 MT . Finally, suppose that q 2 MT , q 6= q

i
, i 2 {S,H}. Then, the sender never gains

36As the principal only mixes after an inconclusive audit when her posterior is either q
S
(thus, mixing

between dL and dS) or q
H

(thus, mixing between dS and dH) the analyst must obtain a di↵erent expected

payo↵ after an inconclusive audit when reporting q and q
0 if these distributions are di↵erent.
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from tampering, as the audited decision is independent of m and the unaudited decision

would be the same if he had instead truthfully reported his type. ⌅
Proof of Proposition 2: (i) We show that for each � and k 2 {S, I}, there is always

an equilibrium of the design subgame in which the designer selects a robust experiment. To

this end, let ⇧⌃ be the set of experiments with outcomes
n
q
L
, q

S
, q

o
, indexed by (pL, pS, p)

with pL, pS, p � 0 and pL + pS = 1,and defined as follows:

⇧⌃ ⌘
nn

q
L
, q

S
, q

o
: q � q

H
and Pr [q] = 1� p,Pr

h
q
L

i
= p ⇤ pL,Pr

h
q
S

i
= p ⇤ pS

o
,

and equilibrium decision making

dU

⇣
q
i

⌘
= dI

⇣
m, q

i

⌘
= di; dI (m, q) = dH ; dU (q) = ⌧dH + (1� ⌧)dS,

and note that ⇧ ⇢ ⇧⌃.

Now consider an arbitrary finite experiment ⇡̃ = {q,Pr [q]}
q2S(⇡̃) and suppose that players

follow a PBE of the communication subgame in which the principal, if indi↵erent after a

conclusive audit–which only applies if either q
S
2 S(⇡̃) or q

H
2 S(⇡̃)–always selects the

agents’ preferred decision–i.e., d⇤
I
(m, q

i
) = di i = {S,H}. We show that there exists ⇡̃R 2 ⇧

that (weakly) improves the designer’s payo↵ relative to ⇡̃. Therefore, if ⇡⇤ 2 ⇧ maximizes

the designer’s payo↵ when restricted to ⇧, then selecting ⇡
⇤ is a PBE of the design subgame,

as the designer’s expected utility cannot be improved by any alternative ⇡̃.

We proceed in two steps. In step 1 we derive an experiment ⇡̃⌃ 2 ⇧⌃ that improves the

designer’s payo↵ relative to ⇡̃. In step 2, we show that the designer’s maximum expected

payo↵ in ⇧⌃ is achieved by an experiment in ⇧.

Step 1: Define ST (⇡̃) as the set of tampering types:

ST (⇡̃) = {q 2 S(⇡̃) : Pr [m⇤(q, c) 6= q] > 0} ,

and recall that, from Proposition 1, MT (⇡̃) is the set of tampered outcomes. Thus, type

q 2 ST (⇡̃) will tamper with positive probability while some tampering type will report

q
0 2 MT (⇡̃) with positive probability. Proposition 1 shows that, if d⇤

I
(m, q

i
) = di whenever

q
i
2 S(⇡), i = {S,H}, then ST (⇡̃) \ MT (⇡̃) = ;. We first show that tampering types

correspond to low realizations while tampered outcomes are associated with high realizations

of the experiment, i.e.,

qST
⌘ max {q : q 2 ST (⇡̃)} < min {q : q 2 MT (⇡̃)} ⌘ qMT

. (21)
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To see this, let d0
U
be the decision following an unaudited tampered outcome—see Propo-

sition 1-ii(a)—and suppose, by contradiction, that there are q
0
< q

00 with q
0 2 MT (⇡̃) and

q
00 2 ST (⇡̃). Assumption 1 implies that message m = q

00 is sent with positive probability

and, as q
00
/2 MT (⇡̃), we must have that the posterior belief of the principal if the audit

is inconclusive must be q
00. Since q

0
< q

00  qST
, and Proposition 1-ii(b) shows that type

s = q
0 2 MT (⇡̃) sends m = q

0, the principal’s posterior belief after an unaudited m = q
0

must be strictly lower than qST
. But then, we must have qST

/2 ST (⇡̃) as type qST
prefers to

induce decision dU (qST
) rather than tamper to induce d

0
U
.

Next, partition S(⇡̃) by defining XL(⇡̃) = S(⇡̃) \ (q
L
, q

S
), XS(⇡̃) = S(⇡̃) \

⇣
q
S
, q

H

⌘
and

XH(⇡̃) = S(⇡̃)\[q
H
, 1]. We now show that (21) implies that all messages in Xi(⇡̃) lead to the

same unaudited (mixture over) decision(s)–which means that all types in Xi(⇡̃) face the same

gain from tampering and must therefore have the same tampering threshold. Proposition 1-

ii(a) implies that this is true ifXi(⇡̃) ⇢ MT (⇡̃). We will show now by contradiction that there

cannot be tampered outcomes as well as non-tampered outcomes in Xi(⇡̃), i 2 {L, S}. To see

this, suppose that qMT
defined in (21) satisfies qMT

2 Xi(⇡̃) and there is some q0 2 Xi(⇡̃) but

q
0
/2 MT (⇡̃). Then we must have q0 < qMT

, but d⇤
U
(q0) = di as the posterior after an unaudited

message q
0 is precisely q

0. However, the posterior after unaudited qMT
2 MT (⇡̃) must be

strictly lower than qMT
. But then we must have that d

⇤
U
(qMT

) = di, otherwise tampering

types would send message q
0 instead of qMT

. Thus, for all q, q0 2 Xi(⇡̃), d⇤U(q) = d
⇤
U
(q0).

We now construct ⇡̃c that has an equilibrium that gives the designer the same expected

utility as the equilibrium of ⇡̃. We do so by replacing all realizations in Xi(⇡̃), i = L, S,H,

with a realization s = q̃
Xi that is its conditional expectation, i.e.,

q̃
Xi =

P
q2Xi(⇡̃)

Pr [q] q
P

q2Xi(⇡̃)
Pr [q]

, Pr
⇥
q̃
Xi

⇤
=

X

q2Xi(⇡̃)

Pr [q] ,

and adjusting the equilibrium (mixture over) messages to

mc(q̃
Xi , c) =

P
q2Xi(⇡̃)

Pr [q]
P

j={L,S,H}
P

q02Xj(⇡̃)
Pr [m(q, c) = q

0] q̃Xj

P
q2Xi(⇡̃)

Pr [q]
.

That is, the probability that type s = q̃
Xi sends message m = q̃

Xj when the cost realization

is c, is the conditional probability that a type in Xi(⇡̃) would send a message corresponding

to a type in Xj(⇡̃). We complement the definition by having threshold types q
i
send message
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m = q̃
Xjwhenever they were sending a message m 2 Xj(⇡̃). As all messages in Xi(⇡̃) led to

the same unaudited decision, the same decision must now be optimal for the principal with

experiment ⇡̃c, as the tampering threshold corresponding to q̃
Xi is the same as the threshold

for q 2 Xi. Thus, the designer’s expected payo↵ from ⇡̃ and ⇡̃c coincide.

To obtain an improvement within the set ⇧⌃
, suppose thatXL(⇡̃) orXS(⇡̃) is non-empty–

otherwise ⇡̃c 2 ⇧⌃. By either lowering q̃
XL > q

L
or q̃XS > q

S
, we can raise the probability

of realization q̃
XH in a way that tampering incentives remain constant but this transformed

experiment raises the designer’s payo↵ by raising the probability of the favorable outcome

s = q̃
XH . Therefore, if XL(⇡̃) or XS(⇡̃) is non-empty, there is an experiment in ⇧⌃ that

gives the designer a higher payo↵.

Step 2: Let ⇡̃⌃ 2 ⇧⌃, described by (pL, pS, p) with associated scale-up probability ⌧ after

an unaudited m = q. As the principal will select the agents’ preferred decision after a conclu-

sive audit reveals s = q
i
, the expected gain from tampering is (1� �) (⌧vH + (1� ⌧) vS � vi)

and this establishes the tampering threshold

c̄i ⌘ c̄(q
i
) = (1� �) (⌧vH + (1� ⌧) vS � vi) = (1� �) [⌧�S + (�i ��S)] . (22)

Suppose first that ⌧ > 0. This requires that the principal’s posterior after an unaudited

m = q must not fall below q
H
, so that Bayesian updating requires that

(1� p) q + p
P

i=L,S
piF (c̄i) qi

(1� p) + p
P

i=L,S
piF (c̄i)

� q
H
,

which, giving the Bayesian consistency constraint (1� p) q = µ� p
P

i=L,S
piqi, leads to

µ� p

X

i=L,S

piqi + p

X

i=L,S

piF (c̄i) qi � q
H

 
(1� p) + p

X

i=L,S

piF (c̄i)

!

p

 
q
H

 
1�

X

i=L,S

piF (c̄i)

!
�

X

i=L,S

pi (1� F (c̄i)) qi

!
� q

H
� µ,

p

 
X

i=L,S

piF̄ (c̄i)
⇣
q
H
� qi

⌘!
� q

H
� µ,

which, using (1) can be expressed as

p

X

i=L,S

pi
F̄ (c̄i)

p
C

i

� 1. (23)
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Note that if this constraint is slack, then the unaudited posterior is strictly above q
H
and

the principal’s sequential rationality implies that ⌧ = 1. But then, experiment ⇡̃
⌃ cannot

be optimal for the designer. Indeed, consider ⇡0 2 ⇧⌃, described by (p0
L
, p

0
S
, p

0), that di↵ers

from ⇡̃
⌃ only in that p0 < p, while p0

i
= pi, but such that the constraint (23) is still slack (so

that ⌧ 0 = 1). As tampering thresholds and decisions have not changed, conditional on each

realization the designer’s expected utility has not changed, but the favorable outcome s = q

is now more likely, thus reaching a contradiction. Thus, in a designer’s optimal experiment

in ⇧⌃, (23) must hold with equality.

We now show that the maximum expected utility of the designer is attained on the

boundary of ⇧⌃, i.e., by setting pi = 0 or pi = 1. But these are precisely the experiments in

⇧.

Let

Wi(c̄i;�, k) = ��i + c̄iF̄ (c̄i)� I{k=I}

Z
ci

0

F̄ (c) dc. (24)

For experiment ⇡̃⌃
, the designer’s utility can be written as

V
�
⇡̃
⌃;�, k

�
=

X

i=L,S

pi{� [(1� p) vH + pvi]

+ (1� �)
⇥
pF̄ (c̄i) vi +

�
1� pF̄ (c̄i)

�
(⌧vH + (1� ⌧) vS)

⇤
}

�I{k=I}p
X

i=L,S

pi

Z
ci

0

F̄ (c) dc

=
X

i=L,S

pi

⇢
vi + �(1� p)�i +

�
1� pF̄ (c̄i)

�
c̄i � I{k=I}p

Z
ci

0

F̄ (c) dc

�

= vH � (1� �) (1� ⌧)�S � p

X

i=L,S

pi

⇢
��i + c̄iF̄ (c̄i)� I{k=I}

Z
ci

0

F̄ (c) dc

�

= vH � (1� �) (1� ⌧)�S � p

X

i=L,S

piWi(c̄i;�, k). (25)

in which we have used (22) for c̄i. Fix an scale-up probability ⌧ > 1–which also determines

the tampering thresholds c̄i, see (22)–and consider the optimal ⇡̂ 2 ⇧⌃ that maximizes

V (⇡;�, k) among experiments in ⇧⌃ with scale-up probability ⌧ . Then, replacing p with the

binding Bayesian updating constraint (23), experiment ⇡̂ solves

max
(pL,pS)

P
i=L,S

piWi(c̄i;�, k)
P

i=L,S
pi

F̄ (c̄i)
p
C

i

, s.t. pL + pS = 1,
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which is a quasiconcave program as the objective function is quasilinear—since it is the

ratio of linear functionals—and the constraint set is convex (see Boyd and Vandenberghe

2004). Then, there is always an extreme point of the simplex that solves this program. In

other words, there is always a robust experiment that maximizes the designer’s payo↵ when

selecting experiments in ⇧⌃. This concludes the proof of part i of the Proposition.

(ii) If the principal organizes to innovate, then the principal is never indi↵erent after a

conclusive audit yields s = q
S
and the proof of part i then implies that there is always a robust

experiment that gives the designer a (weakly) higher payo↵. This establishes V ⇤ = V̄ (µ;�, k).

Now suppose that the principal organizes for scale. Note that the payo↵ from any exper-

iment in ⇧ can be approximated by experiments of the form
n
q
i
+ ✏, q

o
which have a unique

communication equilibrium–i.e., we can express V̄ (µ;�, k) as V̄ (µ;�, k) = supV (⇡;�, k) , s.t., ⇡ =
n
q
i
+ ✏, q

o
, ✏ > 0, i 2

{L, S}. Thus, we must have V ⇤ � V̄ (µ;�, k). The proof of part 1 showed that for any exper-

iment ⇡̃ such that the principal is never indi↵erent after a conclusive audit there is a robust

experiment that gives the designer a (weakly) higher payo↵. Since V
⇤
> V̄ (µ;�, k) implies

that the principal must be indi↵erent after a conclusive audit, then we must have q
S
2 S(⇡⇤)

for any equilibrium experiment ⇡⇤ that yields a payo↵ V
⇤
> V̄ (µ;�, k).

⌅
Proof of Lemma 1: Setting pS = 0 and pL = 0 in (25) and using (24) we obtain

vi(⌧ (c) , µ;�, k) for i 2 {L, S}. Noting from (3) that Pr
h
s = q

i

i
= q�µ

q�q
i

gives (8-9). ⌅
The following lemma complements Proposition 3 as it provides su�cient conditions for

expected equilibrium tampering costs to increase when switching from ⇡S (⌧) 2 ⇧S and

⇡L (⌧) 2 ⇧L.

Lemma 6. Suppose that either (a) ⌘ (c) is convex and p
C

L
> (�S/�L) pCS ; (b) ⌘ (c) is log-

convex; or (c) ⌘ (c) is log-concave and p
C

L
⌘ ((1� �)�L) � p

S

c
⌘ ((1� �)�S) . Then CL(⌧) �

CS(⌧) for all ⌧ 2 [0, 1].

Proof of Lemma 6: From (12), Ci (ci) = p
C

i
⌘(ci) are the equilibrium expected tampering

cost of an experiment in ⇧i that induces threshold ci. We show that condition (13) holds

which implies that CL(⌧) � CS(⌧) for all ⌧ 2 [0, 1].

(a) Suppose ⌘(c) is convex. Then, since ⌘ (c) is increasing we must have

⌘
0(c)  ⌘(c0)� ⌘(c)

c0 � c
 ⌘

0(c0), for c < c
0
.
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To economize on notation, we drop the explicit dependence of cS(⌧) and cL(⌧) on ⌧ and

we let xi = q
H
� qi. We then have

CL (cL)� CS (cS) =
q
H
� µ

xL

⌘(cL)�
q
H
� µ

xS

⌘(cS)

=
q
H
� µ

xLxS

[xS (⌘(cL)� ⌘(cS))� (xL � xS) ⌘(cS)]

�
q
H
� µ

xLxS

[xS⌘
0(cS) (cL � cS)� (xL � xS) ⌘(cS)]

�
q
H
� µ

xLxS


xS

⌘(cS)

cS
(cL � cS)� (xL � xS) ⌘(cS)

�
.

From (3) we have cL(⌧)� cS(⌧) = (1� �) (�L ��S) so

CL (cL)� CS (cS) �

⇣
q
H
� µ

⌘
⌘(cS)

xLxS


xS

(1� �) (�L ��S)

cS
� (xL � xS)

�

=

⇣
q
H
� µ

⌘
⌘(cS)

xL


�L ��S

⌧�S

� xL � xS

xS

�
.

By assumption, pC
L
> (�S/�L) pCS , which can can be written as �L/xL > �S/xS so that

xL

xS

<
�L

�S

) xL � xS

xS

<
�L ��S

�S

<
�L ��S

⌧�S

which implies that CL (cL)� CS (cS) � 0.

(b) Define c implicitly by p
C

L
⌘ ((1� �) (�L ��S)) = p

C

S
⌘ (c). Then, for ⌧ 2 [0, 1] with

cS(⌧)  c and since cL(⌧) = cS(⌧) + (1� �) (�L ��S), then

p
C

L
⌘ (cL(⌧)) � p

C

L
⌘ ((1� �) (�L ��S)) = p

C

S
⌘ (c) � p

C

S
⌘ (cS(⌧)) .

If ⌘(c) is log-convex in [c, (1� �)�L]
✓
p
C

L

p
C

S

�
◆

⌘ (c)

⌘ (c+ (1� �) (�L ��S))
� ⌘ (cS(⌧))

⌘ (cL(⌧))
, for cS(⌧) > c.

Combining both results we have that p
C

S
⌘ (cS(⌧))  p

C

L
⌘ (cL(⌧)) for all ⌧ 2 [0, 1] so (13)

holds.

(b) If ⌘(c) is log-concave, then for ⌧ < 1

⌘ (cL(⌧))

⌘ (cS(⌧))
� ⌘ (cL(1))

⌘ (cS(1))
=

⌘ ((1� �)�L)

⌘ ((1� �)�S)
,

so that (13) is satisfied as long as

⌘ ((1� �)�L)

⌘ ((1� �)�S)
� p

C

S

p
C

L

.
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⌅
Proof of Proposition 3: To ease notation, we drop the explicit dependence of vi(⌧, µ;�, k),

Vi (µ;�, k), and mi(c;�, k) on �, and also write mi(⌧ ; k) for mi(c(⌧); k).

(i) Using (8) and (9), the di↵erence in the designer’s marginal payo↵ from a higher

tampering threshold c when moving from integration to separation is

@ (vi(⌧ (c) , µ; I)� vi(⌧ (c) , µ;S))
@c

=
@ (mi(c; I)�mi(c;S))

@c

⇣
q
H
� µ

⌘
= �p

C

i
⌘
0 (c)  0.

Therefore, the optimal tampering threshold under integration is lower than under separation,

c̄
⇤
i
(�, I)  c̄

⇤
i
(�,S), which implies q⇤

i
(�,S) � q

⇤
i
(�, I).

(ii) Define �m(⌧) ⌘ mS(⌧ ; I) � mL(⌧ ; I) as the di↵erence of the slopes in (9), and

⌧
⇤
i
(µ; k) be the optimal scale-up probability under a k�allocation when the designer selects

an experiment in ⇧i. By assumption, �m(⌧) is single-crossing for ⌧ < 1; let ⌧cr be the

minimum value at which �m(⌧) = 0–we set ⌧cr = 1 if �m(⌧) never crosses zero.

We prove the claim in a series of steps.

Step 1: We show that if �m(⌧) is single-crossing (from negative to positive), then

VL (µ; I)� VS (µ; I) is single crossing in µ 2 [q
S
, q

H
) (from negative to positive); and if µcr

is the minimum value at which VL (µ; I) = VS (µ; I), then ⌧
⇤
L
(µcr; I) � ⌧cr.

To prove that VL (µ; I) � VL (µ; I) is single-crossing, we will make use of the following

two results: (a) for ⌧ 0 > ⌧cr > ⌧
00

vL(⌧
0
, µ0; I) > vS(⌧

00
, µ0; I) ) vL(⌧

0
, µ; I) > vS(⌧

00
, µ; I) for all µ > µ0, (26)

and (b) if VL (µ; I) � VS (µ; I) then ⌧
⇤
L
(µ0; I) � ⌧cr while if VL (µ; I) < VS (µ; I) then

⌧
⇤
S
(µ00

, I) < ⌧cr.

These two results follow from three facts (i) the slope mi(⌧ ; I) is increasing in ⌧ ; (ii)

the designer’s payo↵ at µ = q
H

is the same across experiments with the same scale-up

probability, i.e., vL(⌧, q
H
; I) = vS(⌧, q

H
; I)—both facts follow immediately from (9)– and

(iii) if vL(⌧ 0, µ; I) � vS(⌧ 0, µ; I) then mS(⌧ 0; I) � mL(⌧ 0; I) so that ⌧ 0 � ⌧cr.

By way of contradiction, suppose that there exist µ
0
, µ

00 2 [q
S
, q

H
) with µ

0
< µ

00 and

VL (µ0; I) > VS (µ0; I) and VL (µ00; I) < VS (µ00; I). The first condition implies that ⌧ ⇤
L
(µ0; I) �

⌧cr and

vL(⌧
⇤
L
(µ0; I) , µ0; I) > max

⌧2[0,1]
vS(⌧, µ

0; I) � vS(⌧
⇤
S
(µ00

, I) , µ0; I),
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while the second condition requires ⌧ ⇤
S
(µ00

, I) < ⌧cr. But then, using (26) we obtain

VL (µ
00; I) � vL(⌧

⇤
L
(µ0; I) , µ00; I) � vS(⌧

⇤
S
(µ00

, I) , µ00; I) = VS (µ
00; I) ,

thus reaching a contradiction.

Step 2: Let V [⌧ 0,1]
i

(µ; k) ⌘ max⌧2[⌧ 0,1] vi(⌧, µ; k) be the designer’s maximum payo↵ when

restricted to experiments with scale-up probability in [⌧ 0, 1]. If �m(⌧) is single-crossing and

CL(⌧) � CS(⌧), for ⌧ 2 [0, 1], then we show that V [⌧cr,1]
L

(µ;S) � V
[⌧cr,1]
S

(µ;S), µ � µcr.

Using the definitions in (9) and (12), we can express the slopes mi in terms of expected

costs as

mi(⌧ ; I) = mi(⌧ ;S) +
1

q
H
� µ

Ci(⌧).

Then, for ⌧ � ⌧cr we have mS(⌧ ; I) � mL(⌧ ; I) which implies

mS(⌧ ;S) � mL(⌧ ;S) +
1

q
H
� µ

(CL(⌧)� CS(⌧)) � mL(⌧ ;S).

Using (8) then we must have vL(⌧, µ;S) � vS(⌧, µ;S) for ⌧ � ⌧cr proving the claim in Step

2.

Step 3: We conclude the proof by showing that VL(µ;S) � VS(µ;S), for µ � µcr. As step

1 showed that VL(µ; I) � VS(µ; I) i↵ µ � µcr, then taking the contrapositive, would imply

that if VS (µ;S) > VL (µ;S) then we must have µ < µcr, implying that VS (µ; I) > VL (µ; I).

To prove Step 3, recall from Step 1 that ⌧ ⇤
L
(µ; I) � ⌧cr for µ � µcr. Suppose first that

for some µ
0 � µcr we have ⌧

⇤
S
(µ0;S) � ⌧cr. Then, Step 2 implies.

VS(µ
0;S) = V

[⌧cr,1]
S

(µ0;S)  V
[⌧cr,1]
L

(µ0;S) = VL(µ
0;S).

Suppose now that ⌧ ⇤
S
(µ0;S) < ⌧cr for some µ

0 � µcr. Then, we must have ⌧
⇤
L
(µ; I) � ⌧cr >

⌧
⇤
S
(µ0;S) and

VL(µ
0;S) � VL(µ

0; I) + CL(⌧
⇤
L
(µ; I)) � VS(µ

0; I) + CL(⌧
⇤
S
(µ0;S)) � VS(µ

0;S),

where the first and last inequality exploit the relation vi(⌧, µ; I) = vi(⌧, µ;S) � Ci(⌧) and

properties of the maximum, and the second inequality uses the single-crossing property

derived in Step 1 and the assumption that CL(⌧) � CS(⌧) for all ⌧ 2 [0, 1] . ⌅
The following lemma will be used in the proof of proposition 4. It guarantees a preference-

preserving property among experiments that approve with probability ⌧ .
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Lemma 7. Let ⇡S (⌧) 2 ⇧S and ⇡L (⌧) 2 ⇧L be experiments that approve with probability

⌧ 2 [0, 1] and suppose that pC
L
> (�S/�L) pCS . Then, for every ⌧ 2 [0, 1] and � > 0,

(i) the designer under separation prefers ⇡S (⌧) to experiment ⇡L (⌧).

(ii) if (13) holds, then the designer under integration prefers ⇡S (⌧) to experiment ⇡L (⌧).

Proof of Lemma 7: (i) Using (8) we have

vS(⌧, µ;�,S)� vL(⌧, µ;�,S) = (mL(cL(⌧);�,S)�mS(cS(⌧);�,S))
⇣
q
H
� µ

⌘
. (27)

First, if pC
L
> (�S/�L) pCS , then we must have that the slopes mi for � = 1 satisfy

mL(cL(⌧); 1,S) =
�L

q
H
� q

L

>
�S

q
H
� q

S

= mS(cS(⌧); 1,S). (28)

Second, since cL(⌧) > cS(⌧), and

cL(⌧)

�L

� cS(⌧)

�S

= (1� �) (1� ⌧)
�S ��S

�L

> 0,

it follows that
�

F (cL(⌧))
+

cL(⌧)

�L

>
�

F (cS(⌧))
+

cS(⌧)

�S

. (29)

Using (9), conditions (28) and (29) imply that

mL(cL(⌧);�,S) > mS(cS(⌧);�,S), (30)

so that (27) is always positive.

(ii) If (13) holds, then expected tampering costs increase when moving to an experiment in

⇧L so we have ⌘(cL(⌧))/
⇣
q
H
� q

L

⌘
> ⌘(cS(⌧))/

⇣
q
H
� q

S

⌘
. From (9), we have mi(c;�, I) =

mi(c;�,S) + ⌘(c)/
⇣
q
H
� q

i

⌘
. This observation coupled with (30) implies

vS(⌧, µ;�, I)� vL(⌧, µ;�, I) = (mL(cL(⌧);�, I)�mS(cS(⌧);�, I))
⇣
q
H
� µ

⌘
> 0

so that the designer obtains a higher payo↵ under integration from ⇡S (⌧) than ⇡L (⌧).

⌅
Proof of Proposition 4: (i-a) Consider experiment

n
q
i
, q (c)

o
inducing tampering

threshold c. Using (8) and (9), we have

@mi(c;�, k)

@�
=

�i

F (c)

 
µ� q

H

q
H
� q

i

!
= �p

C

i
�i

F (c)
, k 2 {S, I} ,
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implying
@vi(⌧ (c) , µ;�, k)

@�
= �i � p

C

i

�i

F (c)
= �i Pr [s = q (c)] ,

which is non-increasing in c. Therefore, @2
vi/@ (��) @ci � 0.

(i-b) Define the feasible set of tampering thresholds

Ci ⌘ [[(1� �) (�i ��S) , (1� �)�i] [ {0}] \ [0, F
�1
(pC

i
/p

FR

i
)], (31)

with p
FR

i
= Pr[s = q] for experiment {q

i
, 1}. To understand Ci, note that c 2 Ci must satisfy

two conditions. First, it must correspond to some scale-up probability ⌧ 2 [0, 1]–from (4)

this implies that c 2 [(1� �) (�i ��S) , (1� �)�i][{0}. Second, the experiment
n
q
i
, q(c)

o

must be feasible–i.e., q(c)  1–which requires F̄ (c) /pC
i
� 1�q

i

1�µ
= 1/pFR

i
–see (3).

We can write the designer’s problem in terms of selecting a tampering threshold c
⇤ that

solves

max
c

vi(⌧ (c) , µ;�, k), s.t. c 2 Ci. (32)

The feasible set Ci is increasing in the strong set order with respect to �� and, from part

(i), vi(⌧ (c) , µ;�, k) is supermodular in (c,��). Theorem 4’ in Milgrom-Shannon (1994) then

implies that the set of maximizers of (32) increases in the strong set order sense with ��.

From (3), for a fixed threshold c the experiment
n
q
i
, q (c)

o
is independent of �, so the set

of optimal experiments q⇤
i
(�, k) decreases in the strong-order sense with �.

(ii) We prove simultaneously part (a) and part (b) by appealing to Lemma 7. Let ⌧ ⇤
i
(�; k)

be the scale-up probability of a designer’s optimal experiment under a k�allocation when

restricted to ⇧i. Then,

VL (µ;�, k) = vL(⌧
⇤
L
(�; k), µ;�, k) < vS(⌧

⇤
S
(�; k), µ;�, k)  VS (µ;�, k)

where the first inequality follows from Lemma 7-i and the last from the definition of VS (µ;�, k)–

see (5). ⌅
Proof of Lemma 2: If f(0) > 0, then whenever � < 1 the principal never approves with-

out a conclusive audit if the designer selects {q
i
, q

H
}. In other words, ⌧ = 0 for experiment

{q
i
, q

H
} and

vi(0, µ;�, k) = vH � (1� �)�i + ci(0)�mi(ci(0);�, k)
⇣
q
H
� µ

⌘
,

53



with ci(0) = (1� �) (�i ��S), i 2 {L, S}. Therefore, for experiment {q
i
, q

H
}, the analyst

will tamper if c < ci(0)�as the principal selects the status quo rather than di whenever the

audit is inconclusive. We now study conditions such that (a) there exists an experiment that

leads to a positive scale-up probability, and (b) the designer’s incremental payo↵ from an

experiment that approves with positive probability is positive. These conditions ensure that

the designer is responsive to auditing in ⇧i.

Consider first (a). The infimum tampering probability among experiments with ⌧ > 0

is F [ci(0)] = F [(1� �) (�i ��S)]. The experiment that induces the highest posterior if

unaudited is
n
q
i
, 1
o
, and, for this experiment, Pr

h
s = q

i

i
= 1�µ

1�q
i

⌘ p
FR

i
. Therefore, there

exists an experiment with a positive scale-up probability, i↵

p
C

i

F (ci(0))
< p

FR

i
() F ((1� �) (�i ��S)) >

p
C

i

p
FR

i

(< 1) . (33)

If i = S, then �i � �S = 0 and this condition is always satisfied for any � 2 [0, 1]. If

i = L, Let ⇤ be the the set of �0
s satisfying (33) if i = L, i.e., ⇤ ⌘

�
� : F̄ (cL(0)) � p

C

L
/p

FR

L

 
.

Consider now (b). Noting from (4) that ci(⌧) = ci(0)+ ⌧ (1� �)�S, we can di↵erentiate

(8)—taking into account (9) and the definition of pC
i
in (1)—to obtain

@vi(⌧, µ;�, k)

@⌧

����
⌧=0

= (1� �)�S

"
�
1� p

C

i

�
� p

C

i

f (ci(0))�
F (ci(0))

�2

(
��i + 1{k=I}

Z
ci(0)

0

F̄ (c)d(c)

)#
.

Note that if i = S, then cS(0) = (1� �) (�S ��S) = 0, so that the condition @vi(⌧, µ;�, k)/@⌧ |⌧=0 >

0 translates to
1� p

C

S

p
C

S
�S

> �
f (0)

�
F (0)

�2 ,

and there is always a 0 < � < 1 that satisfies this condition.

For i = L, define

⇤L(k) ⌘
(
� :

f(cL(0))�
F̄ (cL(0))

�2

 
��L + 1{k=I}

 Z
cL(0)

0

F̄ (c)dc

!!
<

1� p
C

L

p
C

L

)
.

then @vL(⌧,µ;�,k)
@⌧

���
⌧=0

> 0 for � 2 ⇤L(k) and the designer under a k�allocation prefers an

experiment that induces a (small) scale-up probability to the commitment experiment.

In summary, if ⇤i(k) is the set of auditing intensities such that the designer is responsive

to ��auditing, then ⇤S(k) is always non-empty as long as f(0) > 0, while for i = L we have

that ⇤L(k) \ ⇤ ✓ ⇤L(k) ✓ ⇤. ⌅
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Proof of Proposition 5: (i) Applying (15), the principal’s equilibrium expected utility

when organizing to innovate is

U (�, k) = q
H
+ Pr [s = q

⇤
S
(�, k)]�

⇣
q
⇤
S
(�, k)� q

H

⌘
.

Proposition 3-i shows that q⇤
S
(�,S) � q

⇤
S
(�, I) implying U (�,S) � U (�, I) .

(ii) Note that for � = 1 the designer always selects the commitment experiment, thus,

regardless of the task-allocation, q⇤
S
(1, k) = q

H
. By the definition of designer’s responsiveness

to auditing in ⇧S, there exists 0 < � < 1 with q
⇤
S
(�, k) > q

H
and U (�, k) > U (1, k).

Therefore, �⇤
< 1. Conversely, if �⇤

< 1 then, for some k�allocation, U (�⇤
, k) > U (1, k)

which implies q
⇤
S
(�⇤

, k) > q
H

meaning that the designer is responsive to auditing. Lemma

2 then shows that f(0) > 0 is su�cient for the designer to be responsive to auditing under

separation in ⇧S. ⌅
Proof of Lemma 3: Setting k = S in (8) and (9) we have

vS(⌧ (c) , µ;�,S) = vH � (1� �)�S + c��S

q
H
� µ

q
H
� q

S

✓
�

F (c)
+

c

�S

◆

= vH � (1� �)�S +
�
1� p

C

S

�
c� �

p
C

S
�S

F (c)
.

Equation (32) defines the designer’s problem and the feasible set of tampering thresholds

CS = [0, (1� �)�S] \ [0, F
�1
(pC

S
/p

FR

S
)] is defined in (31). Whenever it exists, the marginal

payo↵ from increased tampering is

@vS(⌧ (c) , µ;�,S)
@c̄

=
�
1� p

C

S

�
� �p

C

S
�S

f(c)
�
F (c)

�2 = �p
C

S
�S

✓
�S

�
� L(c)

◆
.

The single-crossing condition implies that vS(⌧ (c) , µ;�,S) is quasiconcave in c. Suppose first

that @vS(⌧ (0) , µ;�,S)/@c̄ = �p
C

S
�S ((�S/�)� L(0))  0, implying @vS(⌧ (c) , µ;�,S)/@c̄ 

0, for c̄ � 0. In this case, we have c̄
⇤ = 0, and the designer selects the commitment

experiment
n
0, q

H

o
. Suppose now that �p

C

S
�S ((�S/�)� L(0)) > 0, and let c̄crit be the

minimum threshold that satisfies @vS(⌧ (c̄crit) , µ;�,S)/@c̄ = 0 (and set c̄crit = 1 if no such

threshold exists). Then, the solution to the designer’s problem satisfies

c̄
⇤(�) = min [c̄crit(�), (1� �)�S, c̄FR] .

⌅
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Proof of Lemma 4: Note first that if the designer selects an “up-or-down” experiment

when � = 1, so that pC
L
�L < p

C

S
�S, then we must have �L > �S. Indeed, since 1�p

C

S
< 1�p

C

L

then

p
C

L
�L < p

C

S
�S ) p

C

S
�S

p
C

L
�L

> 1 >
1� p

C

S

1� p
C

L

) �L > �S.

We now show that if L(c)�(�i/�) is single-crossing in [0,�i] and �L > �S then c̄
⇤
S
(�,S) 

c̄
⇤
L
(�,S); that is, the tampering threshold under separation is larger when the designer’s

experiment is restricted to ⇧L rather than restricted to ⇧S. Then, (15) implies that the

principal’s is weakly better-o↵ when the designer is restricted to ⇧L rather than ⇧S.

From lemma 3 and the definition of c̄FR we can write

c̄
⇤
i
(�,S) = min

⇥
L
�1(�i/�), (1� �)�i, F̄

�1
�
p
C

i
/p

FR

i

�⇤
.

Since pC
i
/p

FR

i
=

q
H
�µ

q
H
�q

i

1�q
i

1�µ
increases in q

i
, we have F̄�1

�
p
C

S
/ (1� µ)

�
< F̄

�1
�
p
C

L
/ (1� µ)

�
.

Second, if L(c) � (�i/�) is single crossing and �L > �S, we must have L
�1(�S/�) <

L
�1(�L/�). Combining both observations with �S < �L, we must have c̄⇤

S
(�,S)  c̄

⇤
L
(�,S).

⌅
Proof of Proposition 6: (i) If Proposition 3-ii holds, then a preference for status-quo

experiments is preserved under integration, i.e., i⇤ (S,�) = S ) i
⇤ (I,�) = S. Proposition

3-i already shows that the principal prefers to separate tasks whenever i⇤ (S,�) = i
⇤ (I,�)

as q⇤
i
(�,S) � q

⇤
i
(�, I) implies c̄⇤

i
(�,S) � c̄

⇤
i
(�, I). If, additionally, Lemma 4 holds, then the

principal prefers that the designer selects an “up-or-down” experiment rather than a status-

quo experiment. Since she also prefers the designer’s experiment under separation when

i
⇤ (S,�) = i

⇤ (I,�) = S, then we must have that she prefers separation when i
⇤ (S,�) = L

and i
⇤ (I,�) = S.

(ii) From the proof of Proposition 6-i, for integration to be optimal, we must have an

adverse switch so that i⇤ (S,�) = S and i
⇤ (I,�) = L. We show that if W (�S, (1� �)�S) >

W (�L, (1� �)�L) then we can find a range of parameters so that the principal strictly

prefers to integrate tasks. To economize on notation, let

T (�i, ⌧) ⌘
��i

F (ci(⌧))
+ ci(⌧),

so that W (�i, c̄) defined in (18) simplifies to W (�i, c̄) = ⌘(c̄)/T (�i, ⌧ (c̄)) .
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We first derive a su�cient condition for adverse switches when restricted to high scale-up

probabilities, i.e., such that for all ⌧ � ⌧̃ we have

vS(⌧, µ;�,S) � vL(⌧, µ;�,S) and vS(⌧, µ;�, I)  vL(⌧, µ;�, I).

Using (8), (9), and the definition of ci(⌧) in (4) these two conditions translate to

p
C

S
T (�S, ⌧)  p

C

L
T (�L, ⌧) , and

p
C

S
(T (�S, ⌧) + ⌘ (cS(⌧))) � p

C

L
(T (�L, ⌧) + ⌘ (cL(⌧))) ,

which simplifies to
T (�S, ⌧) + ⌘ (cS(⌧))

T (�L, ⌧) + ⌘ (cL(⌧))
� p

C

L

p
C

S

� T (�S, ⌧)

T (�L, ⌧)
. (34)

Note that a necessary condition for (34) is that T (�L, ⌧) ⌘ (cS(⌧)) � T (�S, ⌧) ⌘ (cL(⌧)). ,

which is implied by

W (�S, cS(⌧)) � W (�L, cL(⌧)) . (35)

The condition W (�S, (1� �)�S) > W (�L, (1� �)�L) is equivalent to (35) setting ⌧ = 1.

Continuity of W and ci(⌧) implies that there is ⌧̃ < 1, so that (35) is satisfied for ⌧ > ⌧̃ . In

fact, since pC
L
/p

C

S
=
⇣
q
H
� q

S

⌘
/

⇣
q
H
� q

L

⌘
and W does not depend on the prior µ, then we

can find q
S
with q

L
< q

S
< q

H
so that pC

L
/p

C

S
is closed to 1 and (34) holds for ⌧ > ⌧̃ .

Finally, we have that both under separation and integration, the designer’s optimal ex-

periment tends to the maximum scale-up probability as µ ! q
H
, i.e., ⌧ (c̄⇤

i
(�, k)) ! 1 as

µ ! q
H
. Then we can find µ, with q

S
< µ < q

H
so that the principal’s optimal experiment

satisfies ⌧ (c̄⇤
i
(�, k)) > ⌧̃ , k = S, I. This implies that we have an adverse switch for �: the

designer under separation would select i⇤ (S,�) = S but under integration he would select

i
⇤ (I,�) = L. For large ↵L, so that “up-or-down” experiments are more valuable to the

principal, then she would optimally integrate tasks.

(iii) If pC
L

> (�S/�L) pCL , then setting � = 1 leads to experiment {q
S
, q

H
} regardless

of task allocation. Then, Proposition 5 shows that if f(0) > 0, then �
⇤
< 1. If p

C

L
<

(�S/�L) pCL , however, the designer selects
n
q
L
, q

H

o
if � = 1 and setting � < 1 may trigger

an adverse switch. If, however, the designer under a k�allocation is �0�sensitive in ⇧L and

i
⇤ (k,�0) = L, then

�
0F (c̄⇤S(�; i

⇤))

F̄ (c̄⇤S(�; i
⇤))

> 0

✓
=

F (0)

F̄ (0)

◆
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and (15) shows that the principal’s utility increases when reducing � from 1 to �
0. ⌅

Proof of Corollary 1: Suppose that the designer is responsive to auditing but �⇤ = 1.

Then, from Proposition 6-iii we must have that p
C

L
< (�S/�L) pCS but for each � so that

he prefers some experiment {q
L
, q}, q > q

H
to {q

L
, q

H
} it must be that i

⇤ (k,�) = S.

Since p
C

L
< (�S/�L) pCS , then Lemma 4 implies that for any � the designer’s choice under

separation improves the principal’s utility, and she cannot be worse-o↵ by committing to rule

out the status-quo. But in this case, the principal’s problem converts to a situation in which

she organizes to innovate (as she selects from two decisions, dL and dH) and Proposition 6-ii

implies �⇤
< 1. ⌅

Proof of Proposition 7: Suppose first that the principal organizes to innovate and,

when auditing intensity is �, the designer under separation selects ⇡S = {q
S
, q} (= {0, q}),

with p = Pr
h
s = q

S

i
= (q � µ)/

⇣
q � q

S

⌘
.37 We first show that we must have

�  1� p
C

S

1� p
C

S
+ p� p

C

S

⌘ e�S(p). (36)

To see this, we express vS(⌧ (p) , µ;�,S) as a function of p: using (3) we have F̄ (cS(p)) =

p
C

S
/p and we can write (8-9) for k = S as

vS(⌧ (p) , µ;�,S) = vH � (1� �)�S + cS(p)� p
C

S

✓
��S

F (cS(p))
+ cS(p)

◆

= vS + ��S + cS(p)� �
p
C

S
�S

F (cS(p))
� p

C

S
cS(p)

= vS + ��S (1� p) +
�
1� p

C

S

�
F

�1
(pC

S
/p).

Designer’s optimality of ⇡S requires

�
F (cS(p)) =

� pC
S

p
 F ((1� �)�S),

vS(⌧ (p
0) , µ;�,S)  vS(⌧ (p) , µ;�,S) for p0 2

⇥
p
C

S
, p
⇤
.

The first condition follows from cS(p)  (1� �)�S, as the gain from tampering is bounded

by (1� �)�S, while the second is the designer’s incentive compatibility constraint when

37Recall that, regardless of the cost distribution, the principal prefers to separate tasks when organizing

to innovate–see Proposition 5-i.
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comparing ⇡ to robust experiments that are less informative than ⇡.38 Setting p
0 = p

C

S

above, and obviating the common term vS, incentive compatibility implies

��S

�
1� p

C

S

�
 ��S (1� p) +

�
1� p

C

S

�
F

�1
(pC

S
/p)  ��S (1� p) +

�
1� p

C

S

�
(1� �)�S,

from which we obtain (36). Taking into account q = (µ� q
S
)/(1� p), (36) can be written as

e�S(q) =
q � q

S

q � q
S
+ q � q

H

.

We now derive the cost distributions that would lead the designer to select ⇡S(p) = {q
S
, q(p)}

when auditing is e�S(p). Suppose that experiment ⇡S(p) leads to the principal’s rubberstamp-

ing, ⌧(p) = 1, so that cS(p) = F
�1
(pC

S
/p) = (1� e�S(p))�S. Incentive compatibility requires

that for any p
0 2

⇥
p
C

S
, p
⇤
,

�
1� p

C

S

�
F

�1
(pC

S
/p

0)  e�S(p)�S (p
0 � p) +

�
1� p

C

S

� ⇣
1� e�S(p)

⌘
�S.

Using F
�1
(pC

S
/p

0) = F
�1(

�
p
0 � p

C

S

�
/p

0) and simplifying we have

p
0 � p

C

S

p0
 F

✓
e�S(p)�S

p
0 � p

C

S

1� p
C

S

◆
.

Alternatively, letting c = e�S(p)�S

�
p
0 � p

C

S

�
/
�
1� p

C

S

�
, we have

F (c) � c

c+ e�S(p)
p
C

S
�S

1�p
C

S

=
c

c+
p
C

S
�S

1�2pC
S
+p

for c  e�S(p)�S

p� p
C

S

1� p
C

S

. (37)

That is, the likelihood of low tampering costs must be su�ciently high to allow the principal

to approve with low probability if the experiment is not very informative. Note that our

argument didn’t require the distribution to be smooth or to have a density. One distribution

that satisfies (37) is supported only on two cost realizations, 0 and e�S(p)�S

p�p
C

S

1�p
C

S

, with

Pr [c = 0] =
�
p� p

C

S

�
/p, (38)

and, in equilibrium, the analyst only tampers if c = 0 so that expected tampering costs are

zero. From (14), for each ⇡S(q) = {q
S
, q}, with p = Pr[s = q

S
], auditing e�S(q), and cost

distribution satisfying (37), the principal’s utility is

U (⇡S(q)) = q
H
+ (1� p) e�S(q)

⇣
q � q

H

⌘
= q

H
+

⇣
q � q

H

⌘⇣
µ� q

S

⌘

2q � q
S
� q

H

, (39)

38If ⌧(p) = 1, the designer cannot improve scale-up probability by switching to a robust experiment that

is more informative than ⇡ = {q
S
, q} so that trivially vS(⌧ (p0) , µ;�,S)  vS(⌧ (p) , µ;�,S) for p0 > p. When

implementing ⇡(p) with auditing intensity �S(p) we will look at cost distributions for which ⌧(p) = 1.
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which is increasing in q. Thus, the principal optimally sets q = 1—alternatively, p = (1 �

µ)/(1�q
S
). Since q

S
= 0 when organizing to innovate, then we must have �opt = e�S(1�µ) =

1/(2�q
H
). Setting p = (1� µ) in (38), we obtain Pr [c = 0] = µ(1�q

H
)/(q

H
(1� µ)) for the

cost distribution supported on 0 and ec = �opt�S

1�µ�p
C

S

1�µ�p
C

S

= (1�q
H
)/(2�q

H
); this distribution

minimizes tampering costs among all those inducing a fully informative experiment. As this

distribution induces zero costs on the analyst, the designer under integration and separation

would select the same experiment.

Suppose now that the principal organizes for scale and p
C

L
< (�S/�L) pCS , so he selects

{q
L
, q

H
} if � = 1. We prove the optimality of (19) and (20) in two steps. First, we show

that the cost distributions obtained above satisfy the designer’s incentive compatibility for

experiments {q
L
, q} 2 ⇧L which now must also account for the possibility of switching to an

status-quo experiment. Second, after deriving the optimal auditing and cost distribution,

we show that the principal cannot do better by instead inducing the designer to select a

status-quo experiment.

Consider ⇡L(p) = {q
L
, q} (= {0, q}) with p = Pr

h
s = q

L

i
= (q � µ)/(q � q

L
). Then, by

a similar reasoning as above, if the designer under separation selects ⇡L when auditing is �

then we must have

�  1� p
C

L

1� p
C

L
+ p� p

C

L

⌘ e�L(p).

Consider a cost distribution supported on 0 and c̄
⇤ ⌘ e�L(p)�L

p�p
C

L

1�p
C

L

, with

Pr [c = 0] =
�
p� p

C

L

�
/p. (40)

The argument above showed that if the auditing intensity is e�L(p), the designer, when

restricted to ⇧L, selects experiment ⇡L(p). We now show that the designer does not wish to

switch and select instead {q
S
, q

0} 2 ⇧S. Using (40) we first note that any {q
S
, q

0} that leads

to a positive scale-up probability must satisfy

Pr
h
s = q

S

i
� p

C

S

1� Pr [c = 0]
= p

p
C

S

p
C

L

.

as the analyst always tampers when c = 0. Moreover, all experiments satisfying this condition

lead to the principal rubberstamping the analyst’s recommendation. Recalling that vL = 0,
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experiments in ⇧S are dominated by ⇡L(p) i↵

vS + �(1� Pr[s = q
S
])�S + (1� �)

�
1� p

C

S

�
�S

 �(1� p)�L + (1� �)
�
1� p

C

L

�
�L.

Rearranging and noting that vS +�S ��L = vL = 0, then incentive compatibility requires

0  �Pr[s = q
S
]�S � �p�L + (1� �) pC

L
�L � (1� �) pC

L
�L.

Since we assumed that pC
L
�L < p

C

S
�S, then

�Pr
h
s = q

S

i
�S � �p�L + (1� �) pC

S
�S � (1� �) pC

L
�L

� �p
p
C

S

p
C

L

�S � �p�L + (1� �) pC
L
�L � (1� �) pC

L
�L

=

✓
�p

p
C

L

+ (1� �)

◆�
p
C

S
�S � p

C

L
�L

�
� 0.

Therefore, the designer subject to auditing e�L(p) and the two-point cost distribution above

would optimally select ⇡L(p) with Pr[s = q
L
] = p.

From (15), the principal’s utility is

U (⇡L(p)) = q
H
+
⇣
q
H
� µ

⌘ 
e�L(p)

p� p
C

L

p
C

L

+

✓
1 + e�L(p)

p� p
C

L

p
C

L

◆ 
↵L � q

H

q
H
� q

L

!!

= q
H
+
⇣
q
H
� µ

⌘ 1� p
C

L

p
C

L

p� p
C

L

1� 2pC
L
+ p

+

✓
1 +

1� p
C

L

p
C

L

p� p
C

L

1� 2pC
L
+ p

◆ 
↵L � q

H

q
H
� q

L

!!

where we have used F (c̄⇤) /F̄ (c̄⇤) = Pr[c = 0]/ (1� Pr[c = 0]) =
�
p� p

C

L

�
/p

C

L
. This expres-

sion is increasing in p, so that the principal sets p = 1 � µ —and the designer selects in

response a fully informative experiment—implying that �opt = e�L(1� µ) = 1/
⇣
2� q

H

⌘
.

To end this proof, we show that the principal cannot improve her payo↵ by instead

inducing the designer to select an experiment in ⇧S. To see this, suppose that the designer

were restricted to select experiments in ⇧S. Then, the principal’s maximum expected utility

is obtained from (39) by setting q = 1. But then we have

U (⇡S(q = 1)) = q
H
+

⇣
1� q

H

⌘⇣
µ� q

S

⌘

2� q
S
� q

H

 q
H
+

⇣
1� q

H

⌘⇣
µ� q

L

⌘

2� q
L
� q

H

 U (⇡L(q = 1)) .

⌅
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Proof of Corollary 2: Under the conditions of Proposition 7, the principal does not

gain by ruling out a decision(s). Therefore, consider the case not cover by Proposition

7: the principal organizes for scale and p
C

L
> (�S/�L) pCS , so that the designer selects a

status-quo experiment if � = 1. This also implies that for any cost distribution under

separation the designer would select a status-quo experiment–see Proposition 4-ii(a). The

proof of Proposition 7 shows that the principal’s maximum payo↵ when restricted to “up-or-

down” experiments is greater than her maximum payo↵ if the designer selects a status-quo

experiment. Therefore, the principal would rule out the status-quo decision dS, and the

optimal auditing and cost distribution would then be given by Proposition 7. ⌅
Proof of Lemma 5: Suppose that the principal organizes for scale and consider exper-

iment {q
S
, q}, q > q

H
. The principal is indi↵erent between decisions dL and dS both after a

conclusive audit determines s = q
S
and after an unaudited message m = q

S
. Let ⌧I(m) be

the probability of choosing dS after message m and a conclusive audit finds s = q
S
and ⌧U(m)

be (i) the probability of selecting dS after an unaudited m = q
S
, and (ii) the probability of

selecting dH after an unaudited m = q. Then,

vI(q
S
, q

S
) = vL + ⌧I(q

S
)(vS � vL)

vU(q) = vS + ⌧U(q)(vH � vS)

are, respectively, the payo↵ from truthtelling after a conclusive audit if s = q
S
and the payo↵

after an inconclusive audit if m = q, and note that the gain from tampering after s = q
S
is

ec ⌘ (1� �)[(1� ⌧U(q
S
))(�L ��S) + ⌧U(q)�S] + �(⌧I(q)� ⌧I(q

S
))(�L ��S), (41)

so that the probability of truthfull communication conditional on s = q
S
is F̄ (ec). The

designer’s equilibrium payo↵ from a non-robust status-quo experiment V
NR

S
can then be

written as

V
NR

S
⌘ Pr[s = q

S
]
⇣
vI(q

S
, q

S
) + F (ec)ec

⌘
+ Pr[s = q] (�vH + (1� �)vU(q)) . (42)

Recall that cS, defined in (3), is the tampering gain that leads the designer’s posterior

to q
H

after an unaudited message m = q, and it satisfies F̄ (cS) = p
C

S

⇣
q�q

S

q�µ

⌘
. Therefore,

principal’s sequential rationality requires ⌧U(q) = 1 if ec < cS and ⌧U(q) = 0 if ec > cS.
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To find the designer’s maximum payo↵, fix ⌧I(q
S
), which pins down the payo↵ under an

audited truthful report vI(q
S
, q

S
). Suppose that ec < cS. Then, ⌧U(q) = 1 and vU(q) = vH ,

so that (42) increases in ec. Likewise, if ec > cS then ⌧U(q) = 0 and vU(q) = vS, so that (42)

again increases with ec. In other words, the designer’s payo↵ increases with the tampering gain

whenever it is di↵erent from the threshold for a robust experiment. Suppose now that ec = cS.

Then, to maintain (41) constant we must decrease scale-up probability ⌧U(q) whenever ⌧I(q)

increases, but this reduces vU(q) and so V
NR

S
decreases with ⌧I(q)–see (42). Therefore, for

fixed ⌧I(q
S
) the maximum payo↵ to the designer is either achieved in an equilibrium in which

ec = cS or an equilibrium which maximizes ec –which, if maxec > cS is attained by setting

⌧I(q) = 1.

We now show that the maximum payo↵ to the designer is obtained when ec = cS and

vI(q
S
, q

S
) = vU(q

S
) = vS so that the principal rewards truthtelling. First, note that for

vI(q
S
, q

S
) = vU(q

S
) = vS there is always an equilibrium in which the principal scales-up

with positive probability after an unaudited m = q. This follows as setting ⌧U(q) at the

level of a robust experiment and adjusting ⌧I(q) < 1 would give ec ⌘ (1 � �)[⌧U(q)�S] +

�(⌧I(q) � 1)(�L ��S) < c. This also implies that the designer’s payo↵ exceeds vS + �pvH

as the principal scales-up also when the audit is inconclusive. But, if ec > cS then the

maximum payo↵ to the designer cannot be above vS + �pvH , as the principal scales-up only

if a conclusive audit yields s = q. It follows that the designer’s optimal is achieved when

ec = cS. Finally, suppose that the optimal is achieved for vI(q
S
, q

S
) < vS or vU(q

S
) < vS

so that the principal (partially) punishes truthtelling when m = q
S
. Increasing either value

while maintaining ec = cS raises the payo↵ vU(q) and thus increasing V
NR

S
. Therefore at the

maximum we must have vI(q
S
, q

S
) = vU(q

S
) = vS

In summary, the designer’s maximum payo↵ from experiment {q
S
, q} is achieved by choos-

ing dS after the analyst truthfully sends m = q
S
but punishing tampering with the lowest

⌧I(q) consistent with a tampering gain of ec = cS. Note that if the principal rubberstamps

the analyst’s recommendation for a robust experiment, then the lowest ⌧I(q) consistent with

ec = cS is precisely ⌧I(q) = 1. Therefore, a robust status-quo experiment {q
S
, q} achieves the

designer’s maximum payo↵ in any PBE following {q
S
, q} if the principal rubberstamps the

analyst’s recommendation. ⌅
Proof of Proposition 8: In the text. ⌅
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