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Abstract

We study the use of mixed strategies in games by ambiguity averse agents with a preference for

randomization. Applying the decision theoretic model of Saito (2015) to games, we establish

that the set of rationalizable strategies grows larger as preferences for randomization weaken.

An agent’s preference for randomization is partially observable: given the behavior of an agent

in a game, we can determine an upper bound on the strength of randomization preferences

for that agent. Notably, data in previous experiments on ambiguity aversion in games is not

consistent with a maximal preference for randomization for approximately 30% of subjects.
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1 Introduction

For an agent in a normal form game the behavior of an opponent is, even in the case where the

game form and payoffs are common knowledge, a source of ambiguity. Given the well documented

prevalence of ambiguity aversion (see the review by Machina and Siniscalchi (2013)), understanding

the role of, and response to, strategic ambiguity in decision making is a first-order problem in

understanding strategic behavior. This paper studies the role of mixed strategies, and preferences

for randomization, in determining the set of rationalizable outcomes for ambiguity averse agents in

normal form games.

Mixed strategies are particularly important for ambiguity averse agents. Suppose that an agent

has access to one action that performs well when her opponent plays Up but poorly when her

opponent plays Down, and a second action that performs well against Down but poorly against

Up. If the agent can mix between these two actions, the agent can generate a strategy that on

average performs reasonably against either Up or Down. A mixed strategy can, therefore, form

an ex-ante hedge against strategic ambiguity and, potentially, eliminate the effects of strategic

ambiguity.

There are two stylized facts from the recent experimental economics literature that are partic-

ularly relevant: [1] that ambiguity averse subjects play games differently than ambiguity neutral

agents, with ambiguity averse subjects choosing ‘safe’ strategies more frequently, and [2] that

subjects often display a persistent preference for randomization.1 The previous literature on ratio-

nalizability with ambiguity averse agents can be split into two categories: The first is consistent

with [1] but not [2] and the second is consistent with [2] but not [1]. In contrast, this paper presents

a model that is consistent with both [1] and [2].

We assume that ambiguity preferences can be represented by Maxmin Expected Utility (Gilboa

and Schmeidler, 1989).2 That is, each agent holds a set valued belief containing all strategies that

are (subjectively) considered feasible for the opponent, and then seeks to maximize the minimum

utility against strategies in the belief set. Maxmin Expected Utility (MEU) has been previously

applied to games in both theoretical (Lo, 2009) and experimental (Calford, 2020) settings and nests

1For example, Calford (2020) and Li et al. (2019) provide evidence that ambiguity averse and ambiguity neutral

subjects behave differently in games, while Ivanov (2011) uses behavior in games to estimate ambiguity preferences.

Agranov and Ortoleva (2017) document a persistent preference for randomization in lottery tasks, and Agranov et al.

(2020) also find a preference for randomization in games. See also the literature discussed in Section 7.
2In Section 6 we briefly discuss extensions to other models of ambiguity preferences, including the smooth ambiguity

model (Klibanoff et al., 2005).
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standard Expected Utility as a special case.

1.1 An illustrative example

R P C

R 6, 3 2, x 0, 0

P x, 2 x, x x, 2

C 0, 0 2, x 3, 6

Figure 1: Modified Battle of the Sexes game. 0 < x < 2.

Consider the modernized Battle of the Sexes game in Figure 1. Rowena and Colin have agreed

to go on a date to either location R or C. Rowena prefers the date occurs at location R, and

Colin prefers location C. Unfortunately, neither person can remember the location at which they

agreed to meet. However, both Colin and Rowena own mobile phones and each may call the other

party to confirm their plans (action P ). Calling the other person ensures that the date goes ahead

but also involves a cost as it reveals, embarrassingly, that the caller was not able to remember the

plans for the date. The outcome of the phone call has some fixed utility, 0 < x < 2, for the caller

and a slightly higher utility, 2, for the receiver. If neither Rowena or Colin chooses to call the

other party, then they risk attending differing locations and earning a payoff of 0. If both players

have standard Expected Utility preferences then the set of rationalizable outcomes for this game is

{(R,R), (R,C), (C,R), (C,C)}.3

Consider the literature that is consistent with statement [1] but not statement [2] above. This

literature assumes that agents may only select pure actions, and that mixing is not feasible (see

Epstein (1997), for example).4 Clearly, R and C are justifiable for each player given they are best

responses to R and C, respectively. The strategy P can be justified by the case where Rowena faces

complete uncertainty about the strategy of Colin. Given Rowena’s MEU preferences, she considers

the worst case scenario for each of her strategies. If she plays R, she fears that Colin will play C and

therefore assigns a utility of 0 to R. If she plays C, she fears that Colin will play R and therefore

assigns a utility of 0 to C. P earns a safe payoff of x > 0 and is therefore the best response to

complete uncertainty. All strategies are justifiable, and the entire game is therefore rationalizable.

3For Rowena the strategy 1
3
R + 2

3
C strictly dominates P , and for Colin 2

3
R + 1

3
C strictly dominates P , where

1
3
R+ 2

3
C denotes the mixed strategy that plays R with probability 1

3
and C with probability 2

3
.

4Mixed strategies are given a beliefs interpretation in this literature: while each individual agent must use a pure

strategy, the agent may still form beliefs about the relative proportions each pure strategy will be used by others.
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Next, consider the literature that is consistent with statement [2] but not statement [1] above.

This literature allows agents to play explicitly mixed strategies and assumes that agents have a

maximal preference for mixing (see Chen and Luo (2012), for example).5 Intuitively, the preference

for mixing arises because the agent believes mixing eliminates the effects of ambiguity and, being

ambiguity averse, the agent values the elimination of ambiguity. A maximal preference for mixing

describes the case where the agent considers it feasible for mixing to fully eliminate the effects of

ambiguity.

Consider again Rowena’s strategy 1
3R+ 2

3C. Given the assumption of a maximal preference for

mixing, this strategy provides Rowena with a complete hedge against the uncertainty generated

by Colin’s behavior because it provides a constant expected payoff. If Colin plays R, this strategy

earns, on average, a utility of 2. If Colin plays C, this strategy earns, on average, a utility of 2.

And, of course, if Colin plays P , this strategy earns a utility of 2. 1
3R + 2

3C therefore strictly

dominates P , which pays only x < 2, and the set of rationalizable strategies is the same as for an

Expected Utility agent.

1.2 When does mixing provide a hedge against ambiguity?

Is it, however, reasonable to assume that 1
3R+ 2

3C provides Rowena with a complete hedge against

ambiguity? Suppose that, for the sake of argument, a date at location R requires Rowena to wear

a cocktail dress while location C requires casual attire. In order to implement her mixed strategy

Rowena must resolve her randomization, then get dressed, and then attend either location R or C.

Rowena is not sure, however, whether she will be making her decision before, or after, Collin makes

his decision. If she believes that Collin makes his decision first then Rowena’s randomization can

provide a hedge against Collin’s predetermined choice (i.e. at the time Rowena makes her decision,

her action fully determines the payoff conditional on all past events). However, if Rowena believes

that she makes her decision first, then her randomization does not provide a hedge against Collin’s

future decision: once she is dressed, Rowena is again exposed to ambiguity.6

5Formally, Chen and Luo (2012) consider a more general class of games where each player has a compact Hausdorff

strategy space. In the special case where the strategy space is a simplex in a finite-dimensional Euclidian space, then

the strategy space can be interpreted as the set of mixed strategies associated with a finite game. In this special case,

Chen and Lou’s assumption that preferences satisfy a “concave-like” condition implies a preference for mixing in the

underlying finite game.
6Similar arguments regarding the timing of the resolution of uncertainty can be found in the decision theory

literature. See Bade (2015), Baillon et al. (2019), Eichberger and Kelsey (1996) and Epstein et al. (2007) for

examples.
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Recent advances in decision theory (Saito, 2015; Ke and Zhang, 2020) argue that the degree to

which 1
3R + 2

3C provides Rowena with a hedge against ambiguity is subjective and equivalent to

Rowena’s strength of preference for randomization. The stronger Rowena’s preference for random-

ization, the greater her subjective sense that 1
3R+ 2

3C generates a hedge against the uncertainty of

Colin’s strategy choice. Using the interpretation of Ke and Zhang (2020), Rowena’s subjective be-

liefs regarding the timing of decisions determines her preference for randomization.7 Here, we study

the effects of the strength of preference for randomization on the set of rationalizable strategies.

Following Saito (2015), we denote Rowena’s preference for randomization by 0 ≤ δ ≤ 1 where

δ = 1 implies that mixing provides a complete hedge against ambiguity and δ = 0 implies that

mixing provides no hedge against ambiguity. The utility of a mixed strategy is taken to be a linear

combination of the utility provided under the case where mixing provides no hedge and the case

where mixing provides a full hedge, with the weights afforded to each case determined by δ.8 In our

example, the utility of 1
3R+ 2

3C, when Rowena faces complete uncertainty about Colin’s behavior,

is given by 2δ. It is, therefore, the case that 1
3R+ 2

3C strictly dominates P whenever 2δ > x. The

set of rationalizable strategies is {(R,R), (R,C), (C,R), (C,C)} when δ > x
2 and the entire game

when δ ≤ x
2 .9

We, therefore, identify behavior that is consistent with stylized facts [1] and [2]. The safe

strategy, P , is rationalizable when δ is small, agents have a preference for randomization whenever

δ > 0, and agents may use mixed strategies to hedge against strategic uncertainty when δ is large.

Further, δ is partially recoverable from observable behavior: if, for example, Rowena is observed to

play P , then we must conclude that δ ≤ x
2 .

7To further illustrate the intuition of Ke and Zhang (2020) applied to games, consider the often used example of a

soccer player shooting a penalty kick at a goalkeeper. The shooter may shoot to the left or right, and the goalkeeper

must simultaneously decide whether to jump to the left or right. The shooter might believe that the goalkeeper is

going to follow a pre-determined action that has been assigned by the goalkeeper’s coach. Or, the shooter might

believe that the goalkeeper will determine their own action at the instant of implementation. In the former situation,

the shooter believes that randomization will hedge against strategic uncertainty, and in the latter situation the shooter

believes randomization will not hedge. If the shooter believes that each scenario is possible, then the shooter will

think that randomization will provide a hedge with some probability between 0 and 1.
8See Section 2 for definitions and details, and Saito (2015) for an axiomatic foundation.
9While in this example the dominance of P implies that P is not justifiable we demonstrate in Example 1 below

that dominance does not, in general, guarantee that an action is not justifiable.
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1.3 The main result

In the main result of this paper we establish, for finite games, that the set of rationalizable strate-

gies weakly increases as preference for randomization decreases. More formally, denote the set of

rationalizable outcomes when agents have preference parameter δ as Zδ. Corollary 1 states that

Zδ ⊆ Zδ
′

for δ ≥ δ′. In the extreme case of δ = 1, Z1 coincides with the standard notion of corre-

lated rationalizability (and Chen and Luo (2012)). On the other extreme, δ = 0, Z0 is consistent

with Epstein (1997).

The intuition underlying this result is straightforward, with one complication. Because δ cap-

tures preference for mixing, the utility of a pure strategy is independent of δ and the utility of a

mixed strategy is (weakly) increasing in δ. Therefore, as δ increases, fewer pure strategies remain

as best responses. A complication arises, however, that it is possible for a strategy to be simultane-

ously dominated as a pure strategy but remain a component of a mixed best response. Nevertheless,

it remains true that for any strategy that is dominated as a pure strategy at δ < 1 there exists

some δ′, with δ ≤ δ′ < 1, such that, for all δ′′ ≥ δ′ every mix using that strategy is dominated.

Hence, as δ increases, more strategies are dominated and less strategies are justifiable.10

The two most closely related papers to this one are Battigalli et al. (2016) and Chen and

Luo (2012). Battigalli et al. (2016) show that the set of rationalizable strategies increases with

ambiguity aversion in the smooth ambiguity aversion model (Klibanoff et al., 2005). Our result

is distinct: here, the underlying ambiguity aversion is constant but the degree to which mixed

strategies provide a hedge against ambiguity varies. Chen and Luo (2012) study rationalizability

with a general class of preferences, but impose a maximal preference for mixing. This paper

considers a more restricted class of preferences, but allows for weaker preferences for mixing. Other

related literature is discussed in Section 7.

The paper proceeds as follows. Section 2 introduces Saito (2015) preferences in the context

of games. Section 3 presents the main result. Section 4 addresses the observability of δ, and

Section 5 considers the case of heterogeneous δ. Section 6 considers extensions of the main result,

and Section 7 discusses the results within the context of the broader literature. Section 8 concludes.

10Lemma 3 from Pearce (1984), which states the equivalence of dominated and not justifiable strategies, holds in

a slightly modified form in our environment.
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2 Ambiguity aversion and preferences over randomization in games

We define a game by G = 〈N, (Ai)i∈N , (vi)i∈N , δ〉 where N = {1, . . . , n} is the set of players, Ai is

a finite set of actions for player i, vi : ×j∈NAj → R is a von-Nuemann Morgenstern utility function

over outcomes, and δ is a preference parameter defined below.11 Let A = ×j∈NAj be the set of

action profiles and A−i = ×j 6=i∈NAj be the set of action profiles of players other than i.

We seek to apply the decision theoretic model of Saito (2015), which builds on the canonical

Maxmin Expected Utility model of Gilboa and Schmeidler (1989). The model of Gilboa and

Schmeidler (1989) posits that agents entertain a set of possible beliefs and calculate the utility of

an action with respect to the belief that minimizes the utility of that action. Saito (2015) defines

utility to be a weighted average of the Maxmin Expected Utility when randomization is assumed

to not provide a hedge against uncertainty and the Maxmin Expected Utility when randomization

does provide a hedge against uncertainty. While the model of Saito (2015) has not previously been

applied in a game theoretic context, the application of decision theoretic frameworks to games has

a rich and fruitful history that extends back to, at least, Tan and Werlang (1988).

To apply Saito (2015) to games, we suppose that A−i forms the state space for player i, whose

set of feasible acts is Ai. The (set of) beliefs for player i is given by Φi ⊆ ∆(A−i), and we restrict

Φi to be closed and convex. We denote the set of all closed and convex subsets of ∆(A−i) by Pi and

note that Pi is a compact metric space with respect to the Hausdorff metric. A (mixed) strategy

for player i is denoted by σi ∈ ∆(Ai), and we define σ = ×i∈Nσi and Φ = ×i∈NΦi.
12

The utility of player i with preference parameter δ, beliefs Φi, and playing mixed strategy σi is

given by:

U(σi,Φi, δ) = δu(σi) + (1− δ)
∑
ai∈Ai

σi(ai)u(ai) (1)

11For convenience, we assume that δ is homogenous across players. We discuss the case of heterogeneous δ in

Section 5.
12Saito (2015) considers the primitives of behavior to be a set of feasible actions, rather than an explicit random-

ization, under the contention that only the outcomes of a randomization, and not the randomization itself, can be

observed. Here we take mixed strategies to be the primitive of choice, but note that we do not at any stage require

the mixed strategy to be directly observable. As is standard, the definition of rationalizability used here specifies the

set of pure strategies that are rationalizable.
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where

u(σi) = min
φ∈Φi

∑
a−i∈A−i

φ(a−i)
∑
ai∈Ai

σi(ai)v(ai, a−i) (2)

and, with an abuse of notation,

u(ai) = min
φ∈Φi

∑
a−i∈A−i

φ(a−i)v(ai, a−i). (3)

δ captures the agent’s subjective beliefs regarding the extent to which mixed strategies provide

a hedge against ambiguity: if δ = 1 then randomization fully eliminates ambiguity, and if δ = 0

then randomization provides no hedge against ambiguity.13

Intuitively, when δ = 0 the agent has Maxmin expected utility preferences over the set of

pure strategies, and mixed strategies are evaluated as a linear combination of the payoffs of the

underlying pure strategies. Consequently, the agent will only play mixed strategies when they are

indifferent between two (or more) pure strategies. When δ = 1, the agent has convex preferences

over mixed strategies and hence may strictly prefer a mixed strategy over any of the pure strategies

in the support of that mixed strategy. The intermediate cases are taken to be a weighted average

of the δ = 0 and δ = 1 cases, with the weight determined by δ.

We shall write Σ∗i (Φi, δ) = {σi : σi ∈ arg maxσ′i∈∆(Ai) U(σ′i,Φi, δ)} to be the set of mixed

strategies that are a best response to beliefs Φi. The set of mixed strategies that are a best

response to some belief are then given by Σ∗i (δ) =
⋃

Φi∈Pi Σ∗i (Φi, δ).

3 Rationalizability

In standard game theory with rational expected utility agents the set of pure strategy realizations

that could by seen by an outside observer is the same as the set of pure strategies that are ratio-

nalizable. In the environment studied in this paper, this equivalence does not hold. Example 1,

below, provides an example that illustrates the source of the problem: it is possible for a mixed

strategy best response to place a positive weight on a dominated pure strategy.

Definition 1. A strategy σi is dominated by σ′i if, for all Φi ⊆ ∆(A−i), U(σ′i,Φi, δ) > U(σi,Φi, δ).

Example 1. Consider the game in Figure 2 where, for readability, we display only the payoffs of the

row player. The strategy A is dominated by B+C
2 for δ > 1

2 . Consider the case where the row player

13The case of δ = 1 is analogous to interpreting mixing as an ex-post randomization in the decision theoretic

literature, and δ = 0 is analogous to interpreting mixing as an ex-ante randomization.
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X Y Z

A 10 10 19

B 40 0 20

C 0 40 20

D 80 80 0

Figure 2: An example game where column player payoffs have been suppressed for readability. Strategy A is both

dominated and justifiable.

has complete uncertainty about the behavior of the column player, so that Φi = ∆({X,Y, Z}), and

fix δ = 0.6. Basic calculations yield U(B+C
2 ,Φi, 0.6) = 12, U(A,Φi, 0.6) = 10 and U(D,Φi, 0.6) = 0.

Yet the mixed strategy 80A+9D
89 produces a utility of 1520

89 ≈ 17, and is a best response to Φ.

There are three possible definitions of rationalizability that might be used in such an environ-

ment. First, rationalizability might be defined as the set of pure strategies that could reasonably

be played. Second, rationalizability might be defined as the set of mixed strategies that could

reasonably be played. Third, rationalizability might be defined as the support of the set of mixed

strategies that could reasonably be played.

We reject the first possibility on the basis that an outside observer of the game could use

this definition to erroneously infer that a player using a reasonable mixed strategy was behaving

irrationally. We therefore prefer the third definition on the basis that it coincides with the set of

pure strategy realizations that an outside observer might use to identify the rationality of a player.

Readers who prefer the second definition can easily amend the definitions used below.

Definition 2. A strategy ai is justifiable with respect to beliefs Φi if ai ∈ supp
(
Σ∗i (Φi, δ)

)
.

Definition 3. A strategy ai is justifiable if ai ∈ supp
(
Σ∗i (δ)

)
.

We define Σ0
i (δ) = Σ∗i (δ), and then build the set of rationalizable strategies recursively. Let

Pni , representing the set of all feasible beliefs sets when each opponent plays a strategy in Σn
j (δ),

be the set of all closed and convex subsets of ∆(A−i|Σn
−i) = {σ−i ∈ ∆(A−i) : ∀j 6= i, margj(σ−i) ∈

co(Σn
j (δ))} where co denotes the convex hull and margj(σ−i) denotes the marginal distribution of

σ−i on Aj . Note that this definition implies that our definition of rationalizability is a form of

correlated rationalizability as we do not impose independence of beliefs over opponent’s strategies.

Finally, let Σn+1
i (δ) =

⋃
Φi∈Pni

Σ∗i (Φi, δ).

Definition 4. The set of rationalizable strategies for player i is Zδi = supp
(⋂∞

n=0 Σn
i (δ)

)
.
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A further direct implication of Example 1 is that a key result of game theory with Expected

Utility agents, often referred to as Pearce’s lemma (Pearce, 1984), that a strategy is dominated if

and only if it is not justifiable, does not hold in our environment. This suggests that a stricter

notion of dominance will be useful.

We say that a (pure) strategy ai is totally dominated if any mixed strategy that places a positive

weight on ai is dominated. We write Σai = {σi : σi(ai) > 0} to denote the set of mixed strategies

for player i where the pure strategy ai is played with a positive probability.

Definition 5. A strategy ai is totally dominated if, for all σai ∈ Σai , σai is dominated.

Clearly, if ai is totally dominated then ai is dominated, and it follows from Example 1 that the

converse does not hold universally.14 Total dominance is, perhaps, not the most intuitive condition,

particularly as each σai ∈ Σai can be dominated by a different σ′. However, total dominance plays

a critical role in our proof: total dominance respects Pearce’s lemma.

Lemma 1. A pure strategy ai is totally dominated if and only if ai is not justifiable.

Proof. If ai is totally dominated then, for all σai ∈ Σai , σai is dominated. Therefore σai is not a

best response to any beliefs and ai is not justifiable.

The proof of the ‘only if’ statement follows the proof of Lemma 3 in Pearce (1984) closely.

Suppose that ai is not justifiable. Then, for all σai ∈ Σai , there exists a function b(Φi) : Pi → ∆(Ai)

such that, for all Φi, U(b(Φi),Φi, δ) > U(σai ,Φi, δ).

Consider the following pure strategy zero-sum game, played between players 1 and 2. The set of

(pure) strategies for player 1 is S1 = ∆(Ai) and the set of (pure) strategies for player 2 is S2 = Pi,

with representative strategies denoted by s1and s2 respectively. Note that the strategy sets for each

player are complete metric spaces; for player 2, we can see this by defining a metric space with the

Hausdorff metric on the collection of all compact sets of strategies in the original game (Henrikson,

1999; Barich, 2011). The payoffs for player 1 are given by U1(s1, s2) = U(s1, s2, δ)−U(σai , s2, δ) and

the payoffs for player 2 are given by U2(s2, s1) = −U1(s1, s2). U1(s1, s2) inherits quasi-concavity

in the first argument, and continuity, directly from the underlying preferences of the original game.

Lemma 6 establishes that U1(s1, s2) is linear in the second argument. Theorem 3.4 of Sion (1958)

guarantees that the minimax theorem holds in pure strategies for this zero-sum game. Let (s∗1, s
∗
2)

denote a pure strategy Nash equilibrium of this game. Then, for any s2 ∈ Pi:
14For the case of expected utility total dominance and dominance are, of course, equivalent. They are also equivalent

at both δ = 1 and δ = 0, but may diverge for intermediate values of δ.
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U1(s∗1, s2) ≥ U1(s∗1, s
∗
2)

≥ U1(b(s∗2), s∗2)

> U1(σai , s
∗
2)

= U(σai , s
∗
2, δ)− U(σai , s

∗
2, δ)

= 0

Further, U1(s∗1, s2) > 0 for all s2 ∈ Pi implies that U(s∗1,Φi, δ) > U(σai ,Φi, δ) for all Φi ∈ Pi.

Therefore, σai is dominated.

The above holds for all σai ∈ Σai . Therefore ai is totally dominated.

Next, we establish that if a strategy is dominated at some δ < 1 then it is also dominated for

all δ′ > δ. To see this, notice that if σi is dominated for some δ then it is also dominated if we

restrict the agent to hold only singleton beliefs.15 Dominance with respect to only singleton beliefs

implies dominance at δ = 1. Further, because Equation 1 is linear in δ, if a strategy is dominated

for any two values of δ it must also be dominated for any intermediate value of δ.

Lemma 2. For all 1 ≥ δ ≥ δ′, if σ′i dominates σi at δ′ then σ′i dominates σi at δ.

Proof. First, we show that σ′i dominates σi at δ = 1. If σ′i dominates σi at δ′ then, in particular, for

all singleton belief sets φi, U(σ′i, φi, δ
′) > U(σi, φi, δ

′) . For singleton belief sets, utility is constant

in δ, so that U(σ′i, φi, 1) > U(σi, φi, 1) for all singleton belief sets φi.

U(σ′i, φi, 1) > U(σi, φi, 1) for all singleton belief sets implies σ′i dominates σi for δ = 1. To see

this, note that for all Φi, writing φ to denote the arg minφ∈Φi u(σ′i), we have the following:

U(σ′i,Φi, 1) = U(σ′i, φ, 1)

> U(σi, φ, 1)

≥ U(σi,Φi, 1).

Second, we show that σ′i dominates σi at δ′ ≤ δ ≤ 1. Utility is linear in δ. Therefore, for any

σ1, σ2 if U(σ1,Φ, 1) > U(σ2,Φ, 1) and U(σ1,Φ, δ′) > U(σ2,Φ, δ′) then U(σ1,Φ, δ) > U(σ2,Φ, δ) at

all intermediate δ′ ≤ δ ≤ 1.
15That is, if a strategy is dominated for an agent with Saito preferences, it is dominated for an agent with Expected

Utility preferences.
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The proof of our key theorem follows directly from the previous lemmas.

Theorem 1. Suppose that δ ≥ δ′. If ai ∈ Ai is justifiable at δ then it is also justifiable at δ′.

Proof. We prove the contrapositive. Suppose that ai is not justifiable at δ′. Then, by Lemma 1, ai

is totally dominated at δ′. Lemma 2 implies that ai is totally dominated at δ. Finally, Lemma 1

implies that ai is not justifiable at δ.

The cardinality of the set of justifiable strategies, and therefore cardinality of the set of ratio-

nalizable strategies, decreases in δ.

Corollary 1. Suppose that δ ≥ δ′. Then Zδ ⊆ Zδ′.

Proof. Follows by application of the iterated definition of rationalizability.

To further understand the scope of this monotonocity result, consider the closely related case of

an agent who always exhibits complete uncertainty about the behavior of an opponent: the agent

only holds one feasible belief, Φi = ∆(A−i). For this agent, the set of justifiable strategies is not

monotonic in δ. That is, while the set of strategies that are justifiable is monotonic in δ, the set of

strategies that are justifiable with respect to Φi = ∆(A−i) is not monotonic in δ.

X Y Z

A 10 10 19

B 40 0 20

C 0 40 20

D 80 80 0

E 11 11 11

Figure 3: An extension of the game in Example 1.

Example 2. Consider the game in Figure 3 where, for readability, we display only the payoffs of

the row player. We fix the row player’s beliefs to be Φi = ∆({X,Y, Z}). At δ = 1 the unique best

response to these beliefs is B+C
2 , and at δ = 0 the unique best response is E. As in Example 1, the

best response at δ = 0.6 is 80A+9D
89 . Because A is justifiable at δ = 0.6, A must also be justifiable

at δ = 0 for some beliefs. Consider the set of beliefs Φ = {φ|φ(Z) ≥ 0.15}, for example.
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3.1 The special cases of δ = 0 and δ = 1

There are several interesting points of intersection between the set of rationalizable set of strategies

developed here, Zδ, and previous results in the literature. The behavior of an agent with δ = 1

is indistinguishable from the behavior of an Expected Utility agent. A version of this result can

also be found in Chen and Luo (2012), and a decision theoretic analogue can be found in Kuzmics

(2017).

Result 1. ai ∈ Z1 if and only if ai is rationalizable for a Subjective Expected Utility agent.

Proof. First, we demonstrate that if strategy ai is justifiable with respect to beliefs Φi then it is

justifiable for a SEU agent.

When δ = 1, preferences reduce to

U(σi,Φi, 1) = min
φi∈Φi

∑
a−i∈A−i

φ(a−i)
∑
ai∈Ai

σ(ai)v(ai, a−i)

= min
φi∈Φi

∑
a−i∈A−i

∑
ai∈Ai

φ(a−i)σ(ai)v(ai, a−i)

Let arg maxσ∈∆(Ai) U(σi,Φi, 1) = σ∗i , and let φ∗i be the utility minimizing belief for U(σ∗i ,Φi, 1).

Clearly, σ∗i is also the best response for an agent with Expected Utility preferences and belief φ∗i .

Next we show that if ai is justifiable for an SEU agent then it is justifiable with respect to some

beliefs Φi. Suppose that σ∗∗ is the best response for an Expected Utility agent with beliefs φ∗∗i .

Let Φ∗∗i = {φ∗∗i }. Then σ∗∗ ∈ arg maxσi∈∆(Ai) U(σi,Φ
∗∗
i , 1).

Finally, equivalence of the sets of justifiable strategies implies equivalence of the set of correlated

rationalizable strategies.

The special case of δ = 0 is also found in the prior literature (Epstein, 1997).16 Thus, one

of the contributions in the literature is providing a connection between the standard notion of

rationalizability and the notion developed in Epstein (1997).

Result 2. ai ∈ Z0 if and only if ai is Epstein (1997) rationalizable.

Proof. Immediate.
16In the following, we use the shorthand “Epstein (1997) rationalizability” to refer to the specific application of

Epstein’s general formulation to the case of Maxmin Expected Utility agents.
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4 Observability of model parameters

Theorem 1 implies that δ is partially observable. Specifically, suppose that there exists a strategy

ai that is justifiable for all δ ≤ δ1 but not justifiable for δ > δ1. Then, if we observe ai being played,

and assume that the agent is rational (in the sense of maximizing utility as defined in Equation 1),

we must conclude that δ ≤ δ1. In addition, suppose that a′i is rationalizable for all δ ≤ δ1 but not

rationalizable for δ > δ1. Then, if we observe a′i being played, and assume rationality and common

knowledge of rationality, we must conclude that δ ≤ δ1.

To illustrate, consider the following game (Figure 4) from Calford (2020) where, for now, we

assume that agents exhibit risk neutrality. We discuss the relaxation of risk neutrality below,

after illustrating the procedure. The proportion of subjects choosing each pure strategy is given in

parentheses.

X (0.66) Y (0.34)

A (0.63) 25, 20 14, 12

B (0.09) 14, 20 25, 12

C (0.28) 18, 12 18, 22

Figure 4: Example from Calford (2020). The proportion of subjects choosing each strategy is given in parentheses.

Payoffs are in Canadian dollars.

Example 3. In this game, C is justifiable if and only if δ ≤ 8
11 and B is rationalizable if and only

if δ ≤ 8
11 . Therefore, if we assume rationality we can conclude that at least 28% of subjects have

δ ≤ 8
11 and if we assume common knowledge of rationality then we can conclude that at least 37%

of subjects have δ ≤ 8
11 . We can conclude that, given the stated assumptions, that at most 63% of

subjects have δ = 1. Of course, this proportion could be considerably lower, given that (A,X) is

rationalizable even for subjects with δ = 0.

Other experimental studies produce similar conclusions.

L (0.40) M (0.30) R (0.30)

U (0.50) 0, 0 6, 2 1, 1.2

D (0.50) 2, 6 0, 0 1.1, 1.2

Figure 5: Example from Kelsey and le Roux (2015). The proportion of subjects choosing each strategy is given in

parentheses. Payoffs are in British Pounds.

Example 4. Consider the game in Figure 5, from Kelsey and le Roux (2015). Strategy R is never
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a best response whenever δ > 4
5 . Given that 30% of subjects play R we can conclude, given an

assumption of rationality, that at least 30% of subjects have δ ≤ 4
5 .

We now address the role of risk preferences. Generally, outside of a special case discussed below,

we are only able to jointly identify risk preferences and δ. To illustrate, we shall assume that agents

have a constant relative risk aversion utility function over monetary outcomes such that, with an

abuse of notation, v(ai, a−i) = v(m(ai, a−i)) = (m(ai,a−i)+w)1−ρ−1
1−ρ where m(ai, a−i) is the monetary

outcome associated with the outcome (ai, a−i) and w is background wealth.17 To conserve on

notation, we will typically write v(m) instead of v(m(ai, a−i)). Given that Z1 is indistinguishable

from the set of rationalizable strategies for an ambiguity neutral agent, in many applications we

are interested in identifying whether δ < 1 or δ = 1. That is, when can we conclude that an agent’s

behavior reveals ambiguity aversion – an event that can only occur when the agent has a less than

complete preference for randomization?

Many experimental studies, including Calford (2020) include measures of risk aversion as con-

trols. Figure 6 depicts the preference for randomization, δ, on the vertical axis and risk aversion,

ρ, on the horizontal axis and displays the set of rationalizable strategies at various parameter

combinations. The figure depicts the function δ = min(v(18)−v(14)
v(l)−v(14) , 1) where v(l) = v(25)+v(14)

2 ,

which delineates the boundary at which the set of rationalizable strategies for the game in Figure 4

changes: below this function all strategies are rationalizable, while above the function only {A,X}

is rationalizable. Using data from an auxillary risk measurement task, Calford (2020) can identify

whether subjects have a CRRA risk aversion parameter that is above, or below, ρ = 1.14 (the

vertical line in the figure).18

If we observe a subject who has risk aversion of ρ < 1.14, and the subject does not play A, then

we can conclude that δ must be bounded away from 1 in the lower left hand region of the figure.

Calford (2020) finds that, for subjects with ρ < 1.14, 70% of subjects play A. Thus, controlling

for risk preferences, albeit in a crude manner, does not materially affect our conclusions about the

proportion of subjects with δ < 1.

17It is well known that CRRA utility estimates are affected by assumptions regarding the integration of wealth

into the utility function. In what follows we assume that subjects integrate all wealth earned during the experiment

(e.g. show up fees, payment from other tasks) into the utility function, but do not integrate wealth from outside the

experiment. Allowing for outside wealth to be integrated into the utility function would reduce the threshold δ values

outlined below; as w increases the effects of curvature of the utility function are reduced.
18This calculation assumes that w = 5 to reflect the $5 show-up fee paid to subjects. In Calford (2020) subjects

were paid for one randomly chosen task, so that there is no need to account for expected earnings from other tasks

within the experiment.
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Figure 6: Set of rationalizable strategies as a function of δ and ρ for the game in Figure 4 from Calford (2020). The

displayed functions are δ = min( v(18)−v(14)
v(l)−v(14) , 1) and ρ = 1.14, where v(l) = v(25)+v(14)

2
. Utility is calculated assuming

that subjects integrate a C$5 show-up fee into their utility function.

Kelsey and le Roux (2015) does not include data on the risk preferences of subjects, yet we

can still claim that δ < 1 for subjects that play R by reflecting on the degree of risk aversion that

we might expect subjects to hold. For example, the canonical Holt and Laury (2002) multiple

price list method for measuring risk preferences is only designed to identify risk preference up to

ρ = 1.37, describing higher degrees of risk aversion as “stay in bed” preferences. Figure 7 depicts

the preference for randomization, δ, on the vertical axis and risk aversion, ρ, on the horizontal axis

and displays the set of rationalizable strategies at various parameter combinations. The boundary

between the two regions in the figure is given by δ = min(v(1.2)−v(0)
v(l)−v(0) , 1), where v(l) = pv(2) + (1−

p)v(0) and p = v(6)−v(0)
v(6)+v(2)−v(0) . It is clear from the figure that for any subject with ρ < 1.37, a choice

of R implies that δ < 1.

In a restricted class of games we can partially identify δ without any assumptions regarding

risk preferences. Denote the set of strategies that can be rationalized by an Expected Utility agent,

as identified by Börgers (1993), by B. That is, B contains all strategies that can be rationalized

under any monotonic transformation of the payoffs of a game.

Lemma 3. In all games where strict dominance and weak dominance coincide, Z1 ⊆ Z0 ⊆ B.

Proof. Suppose that ai is dominated in the sense of Börgers (1993), so that ai /∈ B. Then, when
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Figure 7: Set of rationalizable strategies as a function of δ and ρ for the game in Figure 5 from Kelsey and le Roux

(2015). The displayed function is δ = min( v(1.2)−v(0)
v(l)−v(0) , 1), where v(l) = pv(2) + (1 − p)v(0) and p = v(6)−v(0)

v(6)+v(2)−v(0) .

Utility is calculated assuming that subjects integrate a £5 show-up fee, plus expected earnings from other tasks of

£2, into their utility function.

strict dominance and weak dominance coincide, ai is strictly dominated by a pure strategy (Börgers,

1993). Therefore ai is dominated in the sense of Definition 1 for all δ. It follows that ai is also

totally dominated for all δ. To see this, take any mixed strategy that places positive weight on

ai and replace the weight on ai with the dominating pure strategy (noting that if, instead, ai

was dominated by a mixed strategy this replacement argument would not be valid). Therefore,

ai /∈ Z0.

In the special case where strict dominance and weak dominance diverge, however, it is possible

to partially identify δ without any assumption on risk preferences. To see this consider the game

in Figure 8, which is simplified version of an example found in Epstein (1997).

L R

T 1, 0.9 2, 1

M 1, 100 1, 1

D 2, 0.9 1, 1

Figure 8: Simplified example from Epstein (1997).
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Example 5. The strategy M is weakly dominated by both T and D, but is not strictly dominated

by either pure strategy. M is also dominated in the sense of Börgers (1993) and, because of this, it

is dominated for an EU agent for any monotonic transformation of the payoffs.19 Therefore, M is

not justifiable for any EU agent. It is also the case that M ∈ Z0 but M /∈ Zδ for δ > 0. Therefore,

if we observe an agent playing M we can conclude that δ = 0 for that agent without making any

assumptions about risk preferences.

5 Heterogeneous preferences for randomization

In previous sections we considered only a homogeneous preference for randomization across all

players; here we consider the case of heterogeneous preferences for randomization.

The main results, including Theorem 1, all go through with heterogeneous preferences for

randomization. Suppose that player i has preference parameter δi. Then the set of rationalizable

strategies weakly increases as δi decreases, holding δj constant for j 6= i.

Changes in δ for different players may have drastically different effects on the set of rational-

izable strategies, however. Consider again the game in Figure 4. Suppose that the row player

has preference for randomization δR, and the column player δC . The rationalizable set is {A,X} if

δR >
8
11 and the entire game if δR ≤ 8

11 . Importantly, note that the rationalizable set is independent

of δC .

To see this notice that, for any value of δC , Y is rationalizable only if C is rationalizable. For

the row player, C is justifiable with respect to ΦR = {φ : 0 ≤ φ(X) ≤ 1} if δR ≤ 8
11 and C is

dominated by σ(A) = σ(B) = 1
2 if δR > 8

11 . Further, when C is justifiable then all strategies are

justifiable and the entire game is rationalizable. When C is not justifiable then iterated elimination

implies that Y is not rationalizable which implies that B is not rationalizable.

6 Extensions to other preference models

The proof of Theorem 1 depends on relatively few details of the underlying utility function, sug-

gesting that we can replace the underlying MEU utility with an alternative model of ambiguity

aversion. Here, we sketch the conditions on utility functions for which Theorem 1 will hold, and

discuss the specific application of smooth ambiguity aversion (Klibanoff et al., 2005).

19Clearly, T+D
2

dominates M for any monotonic transformation of the row player’s payoffs.
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In general we can isolate two versions of the appropriate utility function, uep(σ, θ) and uea(σ, θ),

representing utility over ex-post randomizations and ex-ante randomizations respectively, where σ

denotes a mixed strategy and θ denotes an arbitrary belief (which may be a capacity, set of beliefs,

second order distribution etc., depending on the model in question), and the set of all feasible

beliefs is given by Θ. We can then write the general utility function as

U(σ, θ, δ) = δuep(σ, θ) + (1− δ)uea(σ, θ).

Given this, the following conditions are sufficient for Theorem 1 to hold:

1. There exists an appropriate restriction on beliefs, Θ′ ⊂ Θ such that

(a) for all θ′ ∈ Θ′ uep(σ, θ
′) = uea(σ, θ

′); and

(b) for all θ ∈ Θ, there exists a θ′ ∈ Θ′ such that uep(σ, θ
′) = uep(σ, θ).

2. The expression U(σ, θ) = U(σ, θ, δ)−U(σ′, θ, δ) is upper semi-continuous in the first argument

and lower semi-continuous in the second argument and either

(a) quasi-concave in the first argument and quasi-convex in the second argument, or

(b) concave-like in the first argument and convex-like in the second argument.20

For smooth ambiguity preferences Θ is the set of all second order probability distributions, and

utility is linear in such beliefs. Condition 1(a) can be satisfied by restricting second order beliefs

to be degenerate, in which case the preferences collapse back to Expected Utility preferences. If

we restrict agents to be both weakly ambiguity averse and weakly risk averse then preferences are

concave and, therefore, condition 1(b) also holds (Chen and Luo, 2012). The expression U(σ, θ) is

clearly continuous in both arguments, linear in the second argument, and, given the restriction to

weak ambiguity aversion and weak risk aversion, concave in the first argument.

7 Discussion

There is a close relationship between the results presented in this and several recent papers that

have established comparative statics results for ambiguity aversion in games. To understand the

20U(σ, θ) is concave-like in the first argument if for every σ′ ∈ ∆(Ai) and σ′′ ∈ ∆(Ai) and 0 ≤ t ≤ 1 there exists

σ ∈ ∆(Ai) such that tU(σ′, θ) + (1− t)U(σ′′, θ) ≤ U(σ, θ) for all θ ∈ Θ. The definition of convex-like is reverses the

sign of the inequality.

19



relationship, consider that preferences for randomization may be interpreted as an ability to build

hedges against ambiguity. To an outside observer, as my preference for randomization increases I

appear as if I am less ambiguity averse: my ability to hedge implies that I am less affected by the

presence of ambiguity and, therefore, ambiguity has a lesser effect on my behavior. Given that we

interpret rationalizable strategies as the set of strategies that an outside observer might observe,

the close relationship between preference for ambiguity and preference for randomization seems

natural.

The comparative statics results in the existing literature are neither special cases nor general-

izations of the results presented here. The existing literature focuses on the special cases of δ = 0

and δ = 1, while this paper considers all 0 < δ < 1. On the other hand, the existing literature

varies the strength of ambiguity aversion while this paper holds ambiguity aversion constant (and

maximal).21

Several comparative static results for the smooth ambiguity model already exist in the literature.

If δ = 1, then ambiguity preference has no effect on the set of rationalizable strategies (Chen and

Luo, 2012). If δ = 0, then the set of rationalizable strategies increases as ambiguity aversion

increases (Battigalli et al., 2016).22 This paper provides a connection between these two results,

by applying the extension discussed in Section 6: for a fixed degree of ambiguity aversion, the set

of rationalizable strategies decreases in δ with the special case at δ = 1 coinciding with Chen and

Luo (2012) and the special case at δ = 0 coinciding with Battigalli et al. (2016).

Hanany et al. (2020) consider equilibrium in extensive form games with incomplete information

for agents with smooth ambiguity preferences. They establish several distinct comparative statics.

First, if priors are held fixed, then the set of equilibrium strategies can shift arbitrarily as ambiguity

aversion changes. Example 2 demonstrates a similar effect in the current environment: if beliefs

are held fixed, then best response correspondences can vary arbitrarily in δ. Second, if a common

prior restriction is imposed, but beliefs are otherwise allowed to vary, increasing ambiguity aversion

21For a fixed set of beliefs, the MEU model displays the greatest possible ambiguity aversion over those beliefs.

However, the degree of ambiguity aversion exhibited by an MEU agent, as measured by the certainty equivalent of

a prospect, varies as beliefs change. Nevertheless, for each set of beliefs, the MEU model can be formulated as the

limit of the smooth ambiguity model as ambiguity aversion becomes infinite.
22The (Battigalli et al., 2016) result is established for a more general set of games than the finite games considered

in this paper. (Battigalli et al., 2016) also take a conceptually different approach to mixed strategies than used in this

paper. The authors argue that any mixed strategy which might provide a hedge against ambiguity should instead be

defined explicitly in the set of available strategies. Any mixed strategy that is not defined in this manner is assumed

to not provide any hedge against ambiguity. Thus, in the language of the current paper, they assume δ = 1 for a

fixed set of mixed strategies and δ = 0 for any other mixed strategy.
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increases the set of equilibrium outcomes. There is no comparable result in the current framework.

Third, if the common prior restriction is removed, changes in ambiguity aversion have no effect on

the equilibrium set. Finally, if agents are restricted to pure strategies, then increases in ambiguity

aversion increase the set of equilibrium strategies. These final two cases have parallels to the

rationalizability results in the prior literature, discussed above, for the δ = 1 and δ = 0 cases

respectively.23

Also related is Weinstein (2016) who studies the comparative statics of risk aversion in games.

In particular, Weinstein (2016) establishes that the set of rationalizable strategies increases as risk

aversion increases and that in the limit as risk aversion becomes infinite the set of rationalizable

strategies is the set B as identified by Börgers (1993). The relationship between B and Zδ is

formalized in Lemma 3.

Liu et al. (2020) study the role of randomization in exchange economies with MEU agents. There

is a close mapping between the results demonstrated here and those in Liu et al. (2020), despite

the differences in the structure of the environment. Liu et al. (2020) show that the set of feasible

allocations when mixed reports are allowed and δ = 0 is identical to the set of feasible allocations

when only pure reports are allowed. Further, they show that the set of feasible allocations at

δ = 1 is smaller than at any δ < 1 including, in particular, δ = 0. If beliefs are restricted to

represent complete uncertainty, which they refer to as Wald’s maxmin preferences, then every

efficient allocation is feasible for any δ ∈ [0, 1].24

Recent experimental results, in the domain of individual decision making and using Ellsberg

urns as the source of ambiguity, have investigated whether human subjects hold a preference for

randomization or not. Kuzmics et al. (2020) conclude that a proportion of subjects (∼ 35%) appear

to have a preference for randomization devices, but an inability to randomize without a randomiza-

tion device. They also find that a smaller proportion (∼ 23%) refuse to use a randomization device

even after the hedging properties of the randomization are explained.25 The remaining subjects

are either Expected Utility maximizers or exhibit a preference for randomization. Dominiak and

Schnedler (2011) provide evidence that only a minority of ambiguity averse subjects have a pref-

23Note that the restriction to pure strategies is effectively an assumption that δ = 0: it is not possible to use mixed

strategies to construct a hedge if mixed strategies are unavailable.
24It is well known, in the Expected Utility case, that not all efficient allocations are feasible. Thus, the restriction

to complete uncertainty plays an important role by ruling out singleton belief sets (which return the economy to the

EU case).
25The objective randomization was resolved after the subjective uncertainty, and the authors interpret this as a

violation of the motivation for the models given in Saito (2015) and Ke and Zhang (2020). A purely subjective

interpretation of these models could be viewed as consistent with the data.
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erence for randomization. Oechssler et al. (2016) find that timing of the resolution of uncertainty

has no effect on the prevalence of hedging. In direct contrast, Spears (2009) finds that subjects are

more likely to use a randomization device when subjective uncertainty is resolved prior to objective

uncertainty. In addition, Kuzmics et al. (2020) find that many subjects are sensitive to advice on

how randomization should be used to make decisions suggesting that “preferences” in this domain

may not be strongly held. Taken in aggregate, this branch of the literature suggests substantial

variation in δ across subjects.

8 Conclusion

In this paper, we apply a model with ambiguity averse preferences and partial preference for

randomization (Saito, 2015) to game theory. We prove that the set of rationalizable strategies

increases (in the sense of set inclusion) as preference for randomization decreases. Using carefully

designed games, such as those studied in Calford (2020), it is possible to partially identify the

preference for randomization of an ambiguity averse subject in a game theoretic experiment.

A Auxiliary Lemmas

Consider the function U1 : Σ(Ai)× Pi → R given by U1(σ,Φ) = U(σ,Φ, δ)− U(σ′,Φ, δ), for some

fixed σ′ and δ. We prove that U1(σ,Φ) is linear in the second argument.

Take two arbitrary elements ΦA,ΦB ∈ Pi and consider Φα = αΦA + (1− α)ΦB ∈ Pi.26

Lemma 4. U(σ,Φα, δ) ≤ αU(σ,ΦA, δ) + (1− α)U(σ,ΦB, δ)

Proof. We begin with the δ = 1 case, such that utility is given by Equation 2. Write φ∗A and φ∗B

for the belief that minimizes the utility functions U(σ,ΦA, δ) and U(σ,ΦB, δ), respectively. Let

φα = αφ∗A + (1− α)φ∗B, and note that φα ∈ Φα. Then we have

U(σ,Φα, 1) ≤ U(σ, φα, 1)

= U(σ, αφ∗A + (1− α)φ∗B, 1)

= αU(σ, φ∗A, 1) + (1− α)U(σ, φ∗B, 1)

= αU(σ,ΦA, 1) + (1− α)U(σ,ΦB, 1)

26The linear combination is to be taken element by element. That is, Φα = {φ ∈ ∆(A−i) : ∃φA ∈ ΦA, ∃φB ∈

ΦB , φ = αφA + (1− α)φB}.
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where the third line follows from linearity of the utility function for singleton beliefs.

We continue with the δ = 0 case. Write u(ai,Φ) to denote the utility of a pure strategy ai in

Equation 3, where the additional argument emphasizes the beliefs with which the utility is being

calculated. By the same argument as above, u(ai,Φα) ≤ αu(ai,ΦA) + (1 − α)u(ai,ΦB) for all

ai ∈ Ai. Therefore, U(σ,Φα, 0) ≤ αU(σ,ΦA, 0) + (1− α)U(σ,ΦB, 0).

Piecing the two cases together, we have that U(σ,Φα, δ) ≤ αU(σ,ΦA, δ) + (1 − α)U(σ,ΦB, δ)

for all δ.

Lemma 5. U(σ,Φα, δ) ≥ αU(σ,ΦA, δ) + (1− α)U(σ,ΦB, δ).

Proof. We begin with the δ = 1 case, such that utility is given by Equation 2. Write φ∗α for the

belief that minimizes the utility function U(σ,Φα, δ). There exists a φA ∈ ΦA and φB ∈ ΦB such

that φ∗α = αφA + (1− α)φB. We have

U(σ,Φα, 1) = U(σ, φ∗α, 1)

= U(σ, αφA + (1− α)φB, 1)

= αU(σ, φA, 1) + (1− α)U(σ, φB, 1)

≥ αU(σ,ΦA, 1) + (1− α)U(σ,ΦB, 1)

where the third line follows from linearity of the utility function for singleton beliefs.

We continue with the δ = 0 case. Write u(ai,Φ) to denote the utility of a pure strategy ai in

Equation 3, where the additional argument emphasizes the beliefs with which the utility is being

calculated. By the same argument as above, u(ai,Φα) ≥ αu(ai,ΦA) + (1 − α)u(ai,ΦB) for all

ai ∈ Ai. Therefore, U(σ,Φα, 0) ≥ αU(σ,ΦA, 0) + (1− α)U(σ,ΦB, 0).

Piecing the two cases together, we have that U(σ,Φα, δ) ≥ αU(σ,ΦA, δ) + (1 − α)U(σ,ΦB, δ)

for all δ.

Lemma 6. U1(σ,Φ) is linear in the second argument.

Proof. Lemma 4 and Lemma 5 imply that U(σ,Φα, δ) = αU(σ,ΦA, δ) + (1 − α)U(σ,ΦB, δ) for all
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σ. Therefore we have

U1(σ,Φα) = U(σ,Φα, δ)− U(σ′,Φα, δ)

= αU(σ,ΦA, δ) + (1− α)U(σ,ΦB, δ)− αU(σ′,ΦA, δ)− (1− α)U(σ′,ΦB, δ)

= α
[
U(σ,ΦA, δ)− U(σ′,ΦA, δ)

]
+ (1− α)

[
U(σ,ΦB, δ)− U(σ′,ΦB, δ)

]
= αU1(σ,ΦA) + (1− α)U1(σ,ΦB)
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